A survey of deep learning techniques for cybersecurity in mobile networks

Ver/Abrir
10.1109/COMST.2021.3086296
Incluye datos de uso desde 2022
Cita com:
hdl:2117/355516
Tipo de documentoArtículo
Fecha de publicación2021-06-07
Condiciones de accesoAcceso abierto
Todos los derechos reservados. Esta obra
está protegida por los derechos de propiedad intelectual e industrial. Sin perjuicio de las exenciones legales
existentes, queda prohibida su reproducción, distribución, comunicación pública o transformación sin la
autorización de la persona titular de los derechos
Resumen
The widespread use of mobile devices, as well as the increasing popularity of mobile services has raised serious cybersecurity challenges. In the last years, the number of cyberattacks has grown dramatically, as well as their complexity. Traditional cybersecurity systems have failed to detect complex attacks, unknown malware, and they do not guarantee the preservation of user privacy. Consequently, cybersecurity systems have embraced Deep Learning (DL) models as they provide efficient detection of novel attacks and better accuracy. This paper presents a comprehensive survey of recent cybersecurity works that use DL in mobile and wireless networks. It covers all cybersecurity aspects: infrastructure threads and attacks, software attacks and privacy preservation. First, we provide a detailed overview of DL techniques applied, or with potential applications, to cybersecurity. Then, we review cybersecurity works based on DL. For each cybersecurity threat or attack, we discuss the challenges for using DL methods. For each contribution, we review the implementation details and the performance of the solution. In a nutshell, this paper constitutes the first survey that provides a complete review of the DL methods for cybersecurity. Given the analysis performed, we identify the most effective DL methods for the different threats and attacks.
CitaciónRodriguez, E. [et al.]. A survey of deep learning techniques for cybersecurity in mobile networks. "IEEE communications surveys and tutorials", 7 Juny 2021, vol. 23, núm. 3, p. 1920-1955.
ISSN1553877X
Versión del editorhttps://ieeexplore.ieee.org/document/9447833
Ficheros | Descripción | Tamaño | Formato | Ver |
---|---|---|---|---|
survey_DL_cyber+-+final.pdf | 1,214Mb | Ver/Abrir |