Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

58.714 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Ciències de la Computació
  • Ponències/Comunicacions de congressos
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Ciències de la Computació
  • Ponències/Comunicacions de congressos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automatic vehicle counting area creation based on vehicle deep learning detection and DBSCAN

Thumbnail
View/Open
HPCEuropeLatAm2022_umoya-4.pdf (4,405Mb)
Share:
 
 
10.1109/CLUSTER51413.2022.00069
 
  View Usage Statistics
Cita com:
hdl:2117/375674

Show full item record
Alvarez Piña, Gerardo
Moya Sánchez, Eduardo Ulises
Sánchez-Pérez, Abraham
Cortés García, Claudio UlisesMés informacióMés informacióMés informació
Document typeConference report
Defense date2022
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Deep learning and high-performance computing have augmented and speed-up the scope of video-based vehicles' massive counting. The automatic vehicle counts result from the detection and tracking of the vehicles in certain areas or Regions of Interest (ROI). In this paper, we propose a technique to create a counting area with different traffic-flow directions based on YOLO and DBSCAN You Only Look Once version five (YOLOv5) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN). We compare the performance of the method against the manually counted ground truth. The proposed method showed that it is possible to generate the ROIs (counting areas) according to the traffic flow using deep learning techniques with relatively good accuracy (less than 5 % error). These results are promising but we need to explore the limits of this method with more street-view configurations, time and other detection and tracking algorithms, and in an HPC environment.
CitationAlvarez, G. [et al.]. Automatic vehicle counting area creation based on vehicle deep learning detection and DBSCAN. A: IEEE International Conference on Cluster Computing. "2022 IEEE International Conference on Cluster Computing, Cluster 2022: Heidelberg, Germany, 6-9 September 2022: proceedings". Institute of Electrical and Electronics Engineers (IEEE), 2022, p. 535-538. ISBN 978-1-6654-9856-2. DOI 10.1109/CLUSTER51413.2022.00069. 
URIhttp://hdl.handle.net/2117/375674
DOI10.1109/CLUSTER51413.2022.00069
ISBN978-1-6654-9856-2
Publisher versionhttps://ieeexplore.ieee.org/document/9912668
Collections
  • Departament de Ciències de la Computació - Ponències/Comunicacions de congressos [1.218]
  • Computer Sciences - Ponències/Comunicacions de congressos [488]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
HPCEuropeLatAm2022_umoya-4.pdf4,405MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Inici de la pàgina