Large-scale image classification using ensembles of nested dichotomies

Cita com:
hdl:2117/23484
Document typeConference report
Defense date2013
PublisherIOS Press
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
ProjectINTELLACT - Intelligent observation and execution of Actions and manipulations (EC-FP7-269959)
Abstract
Many techniques to reduce the cost at test time in large-scale problems involve a hierarchical organization of classifiers, but are either too expensive to learn or degrade the classification performance. Conversely, in this work we show that using ensembles of randomized hierarchical decompositions of the original problem can both improve the accuracy and reduce the computational complexity at test time. The proposed method is evaluated in the ImageNet Large Scale Visual Recognition Challenge’10, with promising results.
CitationRamisa, A.; Torras, C. Large-scale image classification using ensembles of nested dichotomies. A: Congrés Internacional de l’Associació Catalana d’Intel·ligència Artificial. "Artificial intelligence research and development: proceedings of the 16th International Conference of the Catalan Association for Artificial Intelligence". Vic: IOS Press, 2013, p. 87-90.
ISBN978-1-61499-319-3
Publisher versionhttp://http://dx.doi.org/10.3233/978-1-61499-320-9-87
Files | Description | Size | Format | View |
---|---|---|---|---|
1455-Large-scal ... -of-nested-dichotomies.pdf | 169,9Kb | View/Open |