Show simple item record

dc.contributor.authorBarrón-Cedeño, Alberto
dc.contributor.authorMàrquez Villodre, Lluís
dc.contributor.authorHenríquez Quintana, Carlos Alberto
dc.contributor.authorFormiga Fanals, Lluís
dc.contributor.authorRomero Merino, Enrique
dc.contributor.authorMay, Jonathan
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Llenguatges i Sistemes Informàtics
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
dc.date.accessioned2013-10-18T12:38:28Z
dc.date.available2013-10-18T12:38:28Z
dc.date.created2013
dc.date.issued2013
dc.identifier.citationBarron-Cedeño, A. [et al.]. Identifying useful human feedback from an on-line translation service. A: International Joint Conference on Artificial Intelligence. "Proceedings of 23rd Internacional Joint Conference on Artificial Intelligence". Beijing: 2013, p. 1-7.
dc.identifier.urihttp://hdl.handle.net/2117/20419
dc.description.abstractPost-editing feedback provided by users of on-line translation services offers an excellent opportunity for automatic improvement of statistical machine translation (SMT) systems. However, feedback provided by casual users is very noisy, and must be automatically filtered in order to identify the potentially useful cases. We present a study on automatic feedback filtering in a real weblog collected from Reverso.net. We extend and re-annotate a training corpus, define an extended set of simple features and approach the problem as a binary classification task, experimenting with linear and kernelbased classifiers and feature selection. Results on the feedback filtering task show a significant improvement over the majority class, but also a precision ceiling around 70-80%. This reflects the inherent difficulty of the problemand indicates that shallow features cannot fully capture the semantic nature of the problem. Despite the modest results on the filtering task, the classifiers are proven effective in an application-based evaluation. The incorporation of a filtered set of feedback instances selected from a larger corpus significantly improves the performance of a phrase-based SMT system, according to a set of standard evaluation metrics.
dc.format.extent7 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Llenguatge natural
dc.subjectÀrees temàtiques de la UPC::Enginyeria de la telecomunicació::Processament del senyal
dc.subject.lcshMachine traslating
dc.titleIdentifying useful human feedback from an on-line translation service
dc.typeConference lecture
dc.subject.lemacTraducció automàtica
dc.contributor.groupUniversitat Politècnica de Catalunya. GPLN - Grup de Processament del Llenguatge Natural
dc.contributor.groupUniversitat Politècnica de Catalunya. SOCO - Soft Computing
dc.description.peerreviewedPeer Reviewed
dc.rights.accessOpen Access
local.identifier.drac12610198
dc.description.versionPostprint (published version)
local.citation.authorBarron-Cedeño, A.; Marquez, L.; Henriquez, C.; Formiga, L.; Romero, E.; May, J.
local.citation.contributorInternational Joint Conference on Artificial Intelligence
local.citation.pubplaceBeijing
local.citation.publicationNameProceedings of 23rd Internacional Joint Conference on Artificial Intelligence
local.citation.startingPage1
local.citation.endingPage7


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record