Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.707 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • GPLN - Grup de Processament del Llenguatge Natural
  • Ponències/Comunicacions de congressos
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • GPLN - Grup de Processament del Llenguatge Natural
  • Ponències/Comunicacions de congressos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Identifying useful human feedback from an on-line translation service

Thumbnail
View/Open
Barron et al.pdf (107,1Kb)
Share:
 
  View Usage Statistics
Cita com:
hdl:2117/20419

Show full item record
Barrón-Cedeño, Alberto
Màrquez Villodre, Lluís
Henríquez Quintana, Carlos Alberto
Formiga Fanals, Lluís
Romero Merino, EnriqueMés informacióMés informacióMés informació
May, Jonathan
Document typeConference lecture
Defense date2013
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Post-editing feedback provided by users of on-line translation services offers an excellent opportunity for automatic improvement of statistical machine translation (SMT) systems. However, feedback provided by casual users is very noisy, and must be automatically filtered in order to identify the potentially useful cases. We present a study on automatic feedback filtering in a real weblog collected from Reverso.net. We extend and re-annotate a training corpus, define an extended set of simple features and approach the problem as a binary classification task, experimenting with linear and kernelbased classifiers and feature selection. Results on the feedback filtering task show a significant improvement over the majority class, but also a precision ceiling around 70-80%. This reflects the inherent difficulty of the problemand indicates that shallow features cannot fully capture the semantic nature of the problem. Despite the modest results on the filtering task, the classifiers are proven effective in an application-based evaluation. The incorporation of a filtered set of feedback instances selected from a larger corpus significantly improves the performance of a phrase-based SMT system, according to a set of standard evaluation metrics.
CitationBarron-Cedeño, A. [et al.]. Identifying useful human feedback from an on-line translation service. A: International Joint Conference on Artificial Intelligence. "Proceedings of 23rd Internacional Joint Conference on Artificial Intelligence". Beijing: 2013, p. 1-7. 
URIhttp://hdl.handle.net/2117/20419
Collections
  • GPLN - Grup de Processament del Llenguatge Natural - Ponències/Comunicacions de congressos [192]
  • Departament de Ciències de la Computació - Ponències/Comunicacions de congressos [1.231]
  • SOCO - Soft Computing - Ponències/Comunicacions de congressos [110]
  • Departament de Teoria del Senyal i Comunicacions - Ponències/Comunicacions de congressos [3.230]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
Barron et al.pdf107,1KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina