Show simple item record

dc.contributor.authorPeiret Giménez, Albert
dc.contributor.authorKövecses, József
dc.contributor.authorFont Llagunes, Josep Maria
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Mecànica
dc.date.accessioned2019-03-20T12:27:04Z
dc.date.available2020-03-01T01:25:54Z
dc.date.issued2019-03
dc.identifier.citationPeiret, A.; Kövecses, J.; Font-Llagunes, J.M. Analysis of friction coupling and the Painlevé paradox in multibody systems. "Multibody system dynamics", Març 2019, vol. 45, núm. 3, p. 361-378.
dc.identifier.issn1384-5640
dc.identifier.urihttp://hdl.handle.net/2117/130658
dc.description.abstractMultibody models are useful to describe the macroscopic motion of the elements of physical systems. Modeling contact in such systems can be challenging, especially if friction at the contact interface is taken into account. Furthermore, the dynamics equations of multibody systems with contacts and Coulomb friction may become ill-posed due to friction coupling, as in the Painlevé paradox, where a solution for system dynamics may not be found. Here, the dynamics problem is considered following a general approach so that friction phenomena, such as dynamic jamming, can be analyzed. The effect of the contact forces on the velocity field of the system is the cornerstone of the proposed formulation, which is used to analyze friction coupling in multibody systems with a single contact. In addition, we introduce a new representation of the so-called generalized friction cone, a quadratic form defined in the contact velocity space. The geometry of this cone can be used to determine the critical cases where the solvability of the system dynamic equations can be compromised. Moreover, it allows for assessing friction coupling at the contact interface, and obtaining the values of the friction coefficient that can make the dynamics formulation inconsistent. Finally, the classical Painlevé example of a single rod and the multibody model of an articulated arm are used to illustrate how the proposed cone can detect the cases where the dynamic equations have no solution, or multiple solutions.
dc.format.extent18 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria mecànica
dc.subjectÀrees temàtiques de la UPC::Enginyeria mecànica::Mecànica
dc.subject.lcshFriction
dc.subject.lcshPainlevé equations
dc.subject.otherCoulomb friction
dc.subject.otherFriction coupling
dc.subject.otherPainlevé paradox
dc.subject.otherGeneralized friction cone
dc.titleAnalysis of friction coupling and the Painlevé paradox in multibody systems
dc.typeArticle
dc.subject.lemacFricció
dc.subject.lemacPainlevé, Equacions de
dc.contributor.groupUniversitat Politècnica de Catalunya. BIOMEC - Biomechanical Engineering Lab
dc.identifier.doi10.1007/s11044-018-09656-y
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s11044-018-09656-y
dc.rights.accessOpen Access
local.identifier.drac23580249
dc.description.versionPostprint (author's final draft)
local.citation.authorPeiret, A.; Kövecses, J.; Font-Llagunes, J.M.
local.citation.publicationNameMultibody system dynamics
local.citation.volume45
local.citation.number3
local.citation.startingPage361
local.citation.endingPage378


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain