Show simple item record

dc.contributor.authorConte, Vito
dc.contributor.authorMuñoz Romero, José
dc.contributor.authorMiodownik, Mark
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada III
dc.date.accessioned2010-07-13T16:32:44Z
dc.date.available2010-07-13T16:32:44Z
dc.date.created2008-04
dc.date.issued2008-04
dc.identifier.citationConte, V.; Muñoz, José J.; Miodownik, M. A 3D finite element model of ventral furrow invagination in the Drosophila melanogaster embryo. "Journal of the mechanical behavior of biomedical materials", Abril 2008, vol. 1, núm. 2, p. 188-198.
dc.identifier.issn1751-6161
dc.identifier.urihttp://hdl.handle.net/2117/8161
dc.description.abstractThe paper describes a mechanical model of epithelial tissue development in Drosophila embryos to investigate a buckling phenomenon called invagination. The finite element method is used to model this ventral furrow formation in 3D by decomposing the total deformation into two parts: an imposed active deformation, and an elastic passive deformation superimposed onto the latter. The model imposes as boundary conditions (i) a constant yolk volume and (ii) a sliding contact condition of the cells against the vitelline membrane, which is interpolated as a B-Spline surface. The active deformation simulates the effects of apical constriction and apico-basal elongation of cells. This set of local cellular mechanisms leads to global shape changes of the embryo which are associated with known gene expressions. Using the model we have tested different plausible hypotheses postulated to account for the mechanical behaviour of epithelial tissues. In particular, we conclude that only certain combinations of local cell shape change can successfully reproduce the invagination process. We have quantitatively compared the model with a 2D model and shown that it exhibits a more robust invagination phenomenon. The 3D model has also revealed that invagination causes a yolk flow from the central region to the anterior and posterior ends of the embryo, causing an accordion-like global compression and expansion wave to move through the embryo. Such a phenomenon cannot be described by 2D models.
dc.format.extent11 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Enginyeria biomèdica::Biomecànica
dc.subject.lcshCells--Mechanical properties--Mathematical models
dc.titleA 3D finite element model of ventral furrow invagination in the Drosophila melanogaster embryo
dc.typeArticle
dc.subject.lemacCèl·lules -- Dinàmica
dc.contributor.groupUniversitat Politècnica de Catalunya. LACÀN - Mètodes Numèrics en Ciències Aplicades i Enginyeria
dc.identifier.doi10.1016/j.jmbbm.2007.10.002
dc.description.peerreviewedPeer Reviewed
dc.rights.accessOpen Access
local.identifier.drac728261
dc.description.versionPostprint (author’s final draft)
local.citation.authorConte, V.; Muñoz, José J.; Miodownik, M.
local.citation.publicationNameJournal of the mechanical behavior of biomedical materials
local.citation.volume1
local.citation.number2
local.citation.startingPage188
local.citation.endingPage198


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder