Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

63.157 UPC academic works
You are here:
View Item 
  •   DSpace Home
  • Treballs acadèmics
  • Màsters oficials
  • Master of Science in Advanced Mathematics and Mathematical Engineering (MAMME)
  • View Item
  •   DSpace Home
  • Treballs acadèmics
  • Màsters oficials
  • Master of Science in Advanced Mathematics and Mathematical Engineering (MAMME)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Numerical approximation of Poisson problems using high-order continuous Galerkin methods with static condensation

Thumbnail
View/Open
memoria.pdf (1,392Mb)
Share:
 
  View Usage Statistics
Cita com:
hdl:2117/78471

Show full item record
Pérez Álvarez, Antonio
Tutor / directorRuiz-Gironés, Eloi; Sarrate Ramos, JosepMés informacióMés informacióMés informació
Document typeMaster thesis
Date2015-10
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Higher-order methods in finite elements can provide better approximations than linear methods, in some problems. This is because they can offer an exponential convergence rate of the solution. Thus, in some applications, high-order methods can be cheaper than low-order methods. Nonetheless, it is of major importance to provide good implementations in order to reduce the computational cost of solving a problem. To this end, we propose to use the classical continuous Galerkin method with static condensation procedure to reduce the memory footprint and the CPU time. The main idea consists on write the unknowns related to the inner nodes of each element in terms of the unknowns related to the boundary nodes of the elements. Thus, this method effectively suppress all the unknowns that correspond to pure interior elemental nodes. To show these properties, we apply the static condensation technique to the Poisson problem. We will particularize the proposed technique for this problem, and we will compare the obtained solution and the computational cost with a classical implementation of the high-order continuous Galerkin method. In order to formulate the method correctly, all the needed results are introduced. The results show that static condensation is a valid choice since it reduces the computational cost of solving a problem.
SubjectsNumerical analysis, Anàlisi numèrica
DegreeMÀSTER UNIVERSITARI EN MATEMÀTICA AVANÇADA I ENGINYERIA MATEMÀTICA (Pla 2010)
URIhttp://hdl.handle.net/2117/78471
Collections
  • Màsters oficials - Master of Science in Advanced Mathematics and Mathematical Engineering (MAMME) [262]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
memoria.pdf1,392MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Inici de la pàgina