The graph neural networking challenge: a worldwide competition for education in AI/ML for networks
View/Open
Cita com:
hdl:2117/360063
Document typeArticle
Defense date2021-07-01
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
ProjectNGI-POINTER - NGI Program for Open INTErnet Renovation (EC-H2020-871528)
DISEÑANDO UNA INFRAESTRUCTURA DE RED 5G DEFINIDA MEDIANTE CONOCIMIENTO HACIA LA PROXIMA SOCIEDAD DIGITAL (AEI-TEC2017-90034-C2-1-R)
DISEÑANDO UNA INFRAESTRUCTURA DE RED 5G DEFINIDA MEDIANTE CONOCIMIENTO HACIA LA PROXIMA SOCIEDAD DIGITAL (AEI-TEC2017-90034-C2-1-R)
Abstract
During the last decade, Machine Learning (ML) has increasingly become a hot topic in the field of Computer Networks and is expected to be gradually adopted for a plethora of control, monitoring and management tasks in real-world deployments. This poses the need to count on new generations of students, researchers and practitioners with a solid background in ML applied to networks. During 2020, the International Telecommunication Union (ITU) has organized the "ITU AI/ML in 5G challenge", an open global competition that has introduced to a broad audience some of the current main challenges in ML for networks. This large-scale initiative has gathered 23 different challenges proposed by network operators, equipment manufacturers and academia, and has attracted a total of 1300+ participants from 60+ countries. This paper narrates our experience organizing one of the proposed challenges: the "Graph Neural Networking Challenge 2020". We describe the problem presented to participants, the tools and resources provided, some organization aspects and participation statistics, an outline of the top-3 awarded solutions, and a summary with some lessons learned during all this journey. As a result, this challenge leaves a curated set of educational resources openly available to anyone interested in the topic.
CitationSuárez-varela, J. [et al.]. The graph neural networking challenge: a worldwide competition for education in AI/ML for networks. "Computer communication review", 1 Juliol 2021, vol. 51, núm. 3, p. 9-16.
ISSN0146-4833
Publisher versionhttps://dl.acm.org/doi/10.1145/3477482.3477485
Files | Description | Size | Format | View |
---|---|---|---|---|
Suárez_Varela et al.pdf | 575,1Kb | View/Open |