Show simple item record

dc.contributor.authorPiersanti, Luciano
dc.contributor.authorBravo Guil, Eduardo
dc.contributor.authorCristallo, Sergio
dc.contributor.authorDomínguez Aguilera, Inmaculada
dc.contributor.authorStraniero, Oscar
dc.contributor.authorTornambé, Amedeo
dc.contributor.authorMartínez Pinedo, Gabriel
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Física
dc.identifier.citationPiersanti, L., Bravo, E., Cristallo, S., Domínguez, I., Straniero, O., Tornambé, A., Martínez, G. SNe Ia keep memory of their progenitor metallicity. "The astrophysical journal letters", 9 Febrer 2017, vol. 836, núm. L9, p. 1-6.
dc.description.abstractThe ultimate understanding of SNe Ia diversity is one of the most urgent issues to exploit thermonuclear explosions of accreted White Dwarfs (WDs) as cosmological yardsticks. In particular, we investigate the impact of the progenitor system metallicity on the physical and chemical properties of the WD at the explosion epoch. We analyze the evolution of CO WDs through the accretion and simmering phases by using evolutionary models based on time-dependent convective mixing and an extended nuclear network including the most important electron captures, beta decays, and URCA processes. We find that, due to URCA processes and electron-captures, the neutron excess and density at which the thermal runaway occurs are substantially larger than previously claimed. Moreover, we find that the higher the progenitor metallicity, the larger the neutron excess variation during the accretion and simmering phases and the higher the central density and the convective velocity at the explosion. Hence, the simmering phase acts as an amplifier of the differences existing in SNe Ia progenitors. When applying our results to the neutron excess estimated for the Tycho and Kepler young supernova remnants, we derive that the metallicity of the progenitors should be in the range Z = 0.030 – 0.032 , close to the average metallicity value of the thin disk of the Milky Way. As the amount of 56 Ni produced in the explosion depends on the neutron excess and central density at the thermal runaway, our results suggest that the light curve properties depend on the progenitor metallicity.
dc.format.extent6 p.
dc.subjectÀrees temàtiques de la UPC::Física::Astronomia i astrofísica
dc.subject.otherAccretion disks – nuclear reactions
dc.subject.otherAbundances – supernovae: general – Supernovae: individual (Tycho
dc.titleSNe Ia keep memory of their progenitor metallicity
dc.description.peerreviewedPeer Reviewed
dc.rights.accessOpen Access
dc.description.versionPostprint (author's final draft)
local.citation.authorPiersanti, L.; Bravo, E.; Cristallo, S.; Domínguez, I.; Straniero, O.; Tornambé, A.; Martínez, G.
local.citation.publicationNameThe astrophysical journal letters

Files in this item


This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder