Show simple item record

dc.contributor.authorRahimi-Aghdam, Saeed
dc.contributor.authorBažant, Zdeněk Pavel
dc.contributor.authorCaner, Ferhun Cem
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Ciència dels Materials i Enginyeria Metal·lúrgica
dc.date.accessioned2017-05-17T11:13:01Z
dc.date.available2017-05-17T11:13:01Z
dc.date.issued2016-10-28
dc.identifier.citationRahimi-Aghdam, S., P. Bažant, Z., Caner, F.C. Diffusion-controlled and creep-mitigated ASR damage via microplane model: II. Material degra- dation, drying, and verification. "Journal of engineering mechanics", 28 Octubre 2016, vol. 142, núm. 10, p. 04016109-1-04016109-10.
dc.identifier.issn0733-9399
dc.identifier.urihttp://hdl.handle.net/2117/104558
dc.description.abstractThe theory for the material and structural damage due to the alkali-silica reaction (ASR) in concrete is calibrated and validated by finite element fitting of the main test results from the literature. The fracture mechanics aspects, and particularly the localization limiter, are handled by the crack band model. It is shown that the theory can capture the following features quite well: (1) the effects of various loading conditions and stress states on the ASR-induced expansion and its direction; (2) degradation of the mechanical properties of concrete, par- ticularly its tensile and compressive strength, and elastic modulus; (3) the effect of temperature on ASR-induced expansion; and (4) the effect of drying on the ASR, with or without simultaneous temperature effect. The finite element simulations use microplane model M7. The aging creep, embedded in M7, is found to mitigate the predicted ASR damage significantly. The crack band model is used to handle quasi-brittle fracture mechanics and serve as the localization limiter. The moisture diffusivity, both the global one for external drying and the local one for mortar near the aggregate, decreases by one to two orders of magnitude as the pore humidity drops. The fits of each experimenter’s data use the same material parameters. Close fits are achieved and the model appears ready for predicting the ASR effects in large structures.
dc.language.isoeng
dc.publisherAmerican Society of Civil Engineers (ASCE)
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria dels materials
dc.subject.lcshFracture mechanics
dc.subject.lcshMathematical models
dc.subject.otherConcrete
dc.subject.otherAlkali-silica reaction
dc.subject.othermicroplane model
dc.subject.otherfinite element analysis
dc.titleDiffusion-controlled and creep-mitigated ASR damage via microplane model: II. Material degra- dation, drying, and verification
dc.typeArticle
dc.subject.lemacMecànica de fractura
dc.subject.lemacModels matemàtics
dc.subject.lemacFormigó -- Deterioració
dc.contributor.groupUniversitat Politècnica de Catalunya. DRM - Dosimetria i Radiofísica Mèdica
dc.identifier.doi10.1061/(ASCE)EM.1943-7889.0001185
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://ascelibrary.org/doi/10.1061/%28ASCE%29EM.1943-7889.0001185
dc.rights.accessOpen Access
local.identifier.drac20335266
dc.description.versionPostprint (published version)
local.citation.authorRahimi-Aghdam, S.; P. Bažant, Z.; Caner, F.C.
local.citation.publicationNameJournal of engineering mechanics
local.citation.volume142
local.citation.number10
local.citation.startingPage04016109-1
local.citation.endingPage04016109-10


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record