Show simple item record

dc.contributorGràcia Sabaté, Francesc Xavier
dc.contributor.authorUrtiaga Erneta, Iñigo
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.date.accessioned2017-02-02T12:06:42Z
dc.date.available2017-02-02T12:06:42Z
dc.date.issued2017-01
dc.identifier.urihttp://hdl.handle.net/2117/100485
dc.description.abstractA review of analytical mechanics in the language of differential geometry is given. The classical formulations of Newton, Lagrange and Hamilton are discussed in detail, with special interest in the Hamilton-Jacobi equation. The latter is studied in a new framework, which allows to identify the interesting geometric structures underlying the classical Hamilton-Jacobi theory. Some relevant examples are analysed in this context.
dc.language.isoeng
dc.publisherUniversitat Politècnica de Catalunya
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística
dc.subject.lcshHamiltonian systems
dc.subject.lcshLagrange equations
dc.subject.otherLagrangian mechanics
dc.subject.otherHamiltonian mechanics
dc.subject.otherHamilton-Jacobi equation
dc.subject.otherSlicing equation
dc.titleGeometric mechanics and Hamilton-Jacobi theory
dc.typeBachelor thesis
dc.subject.lemacHamilton, Sistemes de
dc.subject.lemacLagrange, Equacions de
dc.subject.amsClassificació AMS::70 Mechanics of particles and systems::70H Hamiltonian and Lagrangian mechanics
dc.identifier.slugFME-967
dc.rights.accessOpen Access
dc.date.updated2017-01-27T07:02:25Z
dc.audience.educationlevelGrau
dc.audience.mediatorUniversitat Politècnica de Catalunya. Facultat de Matemàtiques i Estadística
dc.audience.degreeGRAU EN MATEMÀTIQUES (Pla 2009)


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain