Show simple item record

dc.contributorAgulló Fité, Luís
dc.contributor.authorD'Aquino Henriques, Roger Arun
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria de la Construcció
dc.date.accessioned2011-07-19T11:10:04Z
dc.date.available2011-07-19T11:10:04Z
dc.date.issued2011-06-30
dc.identifier.urihttp://hdl.handle.net/2099.1/12704
dc.description.abstractPortland cement a binder material, is one of the most widely used materials in the construction industry. As it is cheap, diverse, with excellent material properties and can be adopted for many application processes and forms. In nature there also exist various processes that cause and can induce cementation, and consolidation of particles. In recent years attempts have been made to study, and adopt suitable processes that could cause biocementation. The most promising of them is the use of ureolytic bacteria, as they are widely available in the soil and natural environment, can be easily controlled and have the ability to produce cementation at comparatively much faster rate. The ureolytic bacteria, hydrolyse urea to produce carbonate ions and in the presence of free calcium ions precipitate calcium carbonate. If the saturation levels of the calcium carbonate produced are sufficiently high, it will precipitate forming bonds and consolidating its surroundings. For the bioconcrete to have comparable strengths to that of Portland cement. High amounts of calcium carbonate precipitation are needed, to produce high compressive strength. The strength formation is also linked to other factors like quantity of bacteria, dry density and urease activity. Hence an indepth understanding of the bacteria, growth conditions, cementation materials and application process is needed. This thesis looks into the formation of a concise data base of the materials used in biocementation, their effects and concentrations. The process of biocementation exists in two stages: growth of bacteria and biocementation. The biocementation stage is further divided into the bacterial injection phase and cementation phase, which are independent of each other. Based on the information gathered and analysed, processes for biocementation are proposed and further studied. In this study it has been concluded that by adapting the process for the formation of bioconcrete for use in the precast industry where strengths greater than 20Mpa can be achieved. And that scope for research and further gains in strength is possible. The material properties and potential defects that could arise have also been reviewed in this thesis. Also proposals for improvements and precautionary measures have been established.
dc.language.isoeng
dc.publisherUniversitat Politècnica de Catalunya
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria civil
dc.subjectÀrees temàtiques de la UPC::Enginyeria civil::Materials i estructures::Materials i estructures de formigó
dc.subject.lcshConcrete construction
dc.subject.lcshPortland cement
dc.subject.otherBacterial concrete or bioconcrete
dc.subject.otherPortland cement
dc.subject.otherBiocementation
dc.subject.otherHormigón bacteriano o Biohormigón
dc.subject.otherCemento Portland
dc.subject.otherBiocementación
dc.titleEstudio relativo al hormigón bacteriano: Fabricación y potenciales campos de aplicación
dc.typeMaster thesis
dc.subject.lemacConstruccions de formigó
dc.subject.lemacCiment pòrtland
dc.rights.accessOpen Access
dc.audience.educationlevelMàster
dc.audience.mediatorEscola Tècnica Superior d'Enginyers de Camins, Canals i Ports de Barcelona


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain