Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.728 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Física
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Física
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Image data compression with hierarchical pixel averaging and fully adaptive prediction error coder

Thumbnail
View/Open
Main article (17,07Mb)
Share:
 
 
10.1117/1.JRS.9.097493
 
  View Usage Statistics
Cita com:
hdl:2117/85370

Show full item record
Iudica, Riccardo
Artigues, Gabriel
Portell, Jordi
García-Berro Montilla, EnriqueMés informació
Document typeArticle
Defense date2015-06-04
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
The fully adaptive prediction error coder (FAPEC) is an entropy coder that typically offers better results than the adaptive Rice compressor. It uses basic preprocessing stages such as delta preprocessing, but it can also be combined with a discrete wavelet transform. We describe a new algorithm called hierarchical pixel averaging (HPA). It divides an image into blocks of 16 x 16 pixels, which are subsequently divided into smaller blocks, up to the basic level where one block corresponds to one pixel. Average pixel values are determined for each level from which differential coefficients are extracted. HPA allows the introduction of controlled losses with several quality levels, also allowing to progressively decompress a given image from lower to higher quality. It achieves better resolution in sharp image edges when compared to other lossy algorithms. HPA is based on simple arithmetic operations, allowing a very simple (thus quick) implementation. It does not use any floating-point operations, which is an interesting feature for satellite or embedded data compression. We present a first implementation of HPA and the results obtained on a variety of images, both for the lossless and lossy cases with different quality levels. Our results indicate that HPA + FAPEC offer a performance comparable to that of CCSDS 122.0. (C) 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)
CitationIudica, R., Artiegues, G., Portell, J., Garcia-berro, E. Image data compression with hierarchical pixel averaging and fully adaptive prediction error coder. "Journal of applied remote sensing", 04 Juny 2015, vol. 9. 
URIhttp://hdl.handle.net/2117/85370
DOI10.1117/1.JRS.9.097493
ISSN1931-3195
Collections
  • Departament de Física - Articles de revista [1.907]
  • GAA - Grup d'Astronomia i Astrofísica - Articles de revista [259]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
pHPA.pdfMain article17,07MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina