Posture detection with waist-worn accelerometer : an application to improve Freezing of Gait detection in Parkinson’s disease patients
View/Open
Main chapter (1,100Mb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/83707
Document typePart of book or chapter of book
Defense date2015-09-15
PublisherIos Press
Rights accessRestricted access - publisher's policy
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Freezing of Gait (FoG) is one of the most disturbing symptoms in Parkinson’s disease (PD). Current algorithms that detect this symptom depend on frequency features extracted from wearable systems. These algorithms have only been evaluated under laboratory conditions and, in real life, they might present false positives, reducing the reliability of the algorithm. This paper presents the evaluation of 20 PD patients in their homes and the inclusion of a posture algorithm to contextualize FoG detection. This algorithm, in average, improves specificity a 5% while preserves the sensitivity. In some patients, specificity increases by 11.9% maintaining the sensitivity.
CitationRodriguez-Martin, D., Sama, A., Perez, C., Catala, A., Cabestany, J., Browne, P., Rodríguez, A. Posture detection with waist-worn accelerometer : an application to improve Freezing of Gait detection in Parkinson’s disease patients. A: "Recent advances in ambient assisted living : bridging assistive technologies, e-health and personalized health care". Amsterdam: Ios Press, 2015, p. 3-17.
ISBN978-1-61499-596-8
Files | Description | Size | Format | View |
---|---|---|---|---|
Rodriguez et al ... ove FoG in PD patients.pdf | Main chapter | 1,100Mb | Restricted access |