dc.contributor.author | González Abreu, Artvin Darién |
dc.contributor.author | Saucedo Dorantes, Juan Jose |
dc.contributor.author | Osornio Rios, Roque A. |
dc.contributor.author | Arellano Espitia, Francisco |
dc.contributor.author | Delgado Prieto, Miquel |
dc.contributor.other | Universitat Politècnica de Catalunya. Doctorat en Enginyeria Electrònica |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica |
dc.date.accessioned | 2020-10-15T13:11:23Z |
dc.date.issued | 2020 |
dc.identifier.citation | González, A.D. [et al.]. Deep learning based condition monitoring approach applied to power quality. A: IEEE International Conference on Emerging Technologies and Factory Automation. "2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA): Proceedings: Vienna, Austria - Hybrid: 08-11 September, 2020". Institute of Electrical and Electronics Engineers (IEEE), p. 1427-1430. ISBN 978-1-7281-8957-4. DOI 10.1109/ETFA46521.2020.9212076. |
dc.identifier.isbn | 978-1-7281-8957-4 |
dc.identifier.uri | http://hdl.handle.net/2117/330311 |
dc.description.abstract | Condition monitoring applied to power quality involves several techniques and procedures for the assessment of the electrical signal. Data-driven approaches are the most common methodologies supported on data and signal processing procedures. Electrical systems in factory automation become more complex with the increase of multiple load profiles connected, and unexpected electrical events can occur causing the appearance of power quality disturbances. However, emerging technologies in the techniques related to the detection and identification of power quality disturbances are analyzed and compared according to the complexity of the current electrical system, that is, including simple and combined disturbances. These new technologies allow developing more cyber-physical systems to process the new methodologies for condition monitoring. Thus, in this study, a deep learning-based approach for the identification of power quality disturbances is implemented and their performance analyzed in front of classical disturbances defined by the International standards considered in the related literature. |
dc.description.sponsorship | This research work has been partially supported by FOFIUAQ-2018 FIN 201812 and CONACyT doctoral scholarship number 735042. This work was also supported in part by the European Regional Development Fund from the European Union in the FEDER Operative Programme framework of Catalonia 2014-2020. |
dc.format.extent | 4 p. |
dc.language.iso | eng |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) |
dc.subject | Àrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Aprenentatge automàtic |
dc.subject.lcsh | Machine translating |
dc.subject.other | Power quality |
dc.subject.other | Condition monitoring |
dc.subject.other | Deep learning |
dc.title | Deep learning based condition monitoring approach applied to power quality |
dc.type | Conference report |
dc.subject.lemac | Aprenentatge automàtic |
dc.contributor.group | Universitat Politècnica de Catalunya. MCIA - Motion Control and Industrial Applications Research Group |
dc.identifier.doi | 10.1109/ETFA46521.2020.9212076 |
dc.description.peerreviewed | Peer Reviewed |
dc.relation.publisherversion | https://ieeexplore.ieee.org/document/9212076 |
dc.rights.access | Restricted access - publisher's policy |
local.identifier.drac | 29516697 |
dc.description.version | Postprint (published version) |
dc.date.lift | 10000-01-01 |
local.citation.author | González, A.D.; Saucedo, J.; Osornio, R.; Arellano, F.; Delgado Prieto, M. |
local.citation.contributor | IEEE International Conference on Emerging Technologies and Factory Automation |
local.citation.publicationName | 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA): Proceedings: Vienna, Austria - Hybrid: 08-11 September, 2020 |
local.citation.startingPage | 1427 |
local.citation.endingPage | 1430 |