Mostra el registre d'ítem simple

dc.contributor.authorRodríguez Ferran, Antonio
dc.contributor.authorPérez Foguet, Agustí
dc.contributor.authorHuerta, Antonio
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.date.accessioned2015-02-16T09:40:36Z
dc.date.available2015-02-16T09:40:36Z
dc.date.created2002
dc.date.issued2002
dc.identifier.citationRodriguez, A.; Pérez-Foguet, A.; Huerta, A. Arbitrary Lagrangian–Eulerian (ALE) formulation for hyperelastoplasticity. "International journal for numerical methods in engineering", 2002, vol. 53, p. 1831-1851.
dc.identifier.issn0029-5981
dc.identifier.urihttp://hdl.handle.net/2117/26359
dc.description.abstractThe arbitrary Lagrangian–Eulerian (ALE) description in non-linear solid mechanics is nowadays stan- dard for hypoelastic–plastic models. An extension to hyperelastic–plastic models is presented here. A fractional-step method—a common choice in ALE analysis—is employed for time-marching: every time-step is split into a Lagrangian phase, which accounts for material e>ects, and a convection phase, where the relative motion between the material and the ?nite element mesh is considered. In contrast to previous ALE formulations of hyperelasticity or hyperelastoplasticity, the deformed con?guration at the beginning of the time-step, not the initial undeformed con?guration, is chosen as the reference con?g- uration. As a consequence, convecting variables are required in the description of the elastic response. This is not thecasein previous formulations, whereonly theplastic responsecontains convection terms. In exchange for the extra convective terms, however, the proposed ALE approach has a major advantage: only the quality of the mesh in the spatial domain must be ensured by the ALE remeshing strategy; in previous formulations, it is also necessary to keep the distortion of the mesh in the material domain under control. Thus, the full potential of the ALE description as an adaptive technique can be exploited here. These aspects are illustrated in detail by means of three numerical examples: a necking test, a coining test and a powder compaction tes
dc.format.extent21 p.
dc.language.isoeng
dc.publisherJohn Wiley & Sons
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Física::Física de l’estat sòlid::Propietats mecàniques
dc.subject.lcshLagrange equations
dc.subject.otherarbitrary Lagrangian–Eulerian formulation
dc.subject.otherhyperelastoplasticity
dc.subject.otherfinite strains
dc.subject.othernon-linear solid mechanics
dc.titleArbitrary Lagrangian–Eulerian (ALE) formulation for hyperelastoplasticity
dc.typeArticle
dc.subject.lemacFísica matemàtica
dc.contributor.groupUniversitat Politècnica de Catalunya. LACÀN - Mètodes Numèrics en Ciències Aplicades i Enginyeria
dc.identifier.doi10.1002/nme.362
dc.description.peerreviewedPeer Reviewed
dc.subject.ams70H Hamiltonian and Lagrangian mechanics
dc.rights.accessOpen Access
local.identifier.drac15404019
dc.description.versionPostprint (published version)
local.citation.authorRodriguez, A.; Pérez-Foguet, A.; Huerta, A.
local.citation.publicationNameInternational journal for numerical methods in engineering
local.citation.volume53
local.citation.startingPage1831
local.citation.endingPage1851


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple