Show simple item record

dc.contributor.authorRomanini, Michela
dc.contributor.authorBarrio Casado, María del
dc.contributor.authorMacovez, Roberto
dc.contributor.authorCapaccioli, Simon
dc.contributor.authorTamarit Mur, José Luis
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Física
dc.date.accessioned2020-02-14T09:10:05Z
dc.date.issued2019-12-15
dc.identifier.citationRomanini, M. [et al.]. Mixtures of m-fluoroaniline with apolar aromatic molecules: Phase behaviour, suppression of H-bonded clusters, and local H-bond relaxation dynamics. "Journal of molecular liquids", 15 Desembre 2019, vol. 296, p. 111998:1-111998:8.
dc.identifier.issn0167-7322
dc.identifier.urihttp://hdl.handle.net/2117/177707
dc.description.abstractWe employ differential scanning calorimetry, IR spectroscopy, X-ray powder diffraction and dielectric spectroscopy to characterize binary mixtures of m-fluoroaniline (mFA), a rigid-molecule glass former, with two non-self-associating molecules containing benzene rings, namely m-xylene (mX) and a distyrene derivative (DS). The addition of mX suppresses the formation of H-bonded mFA clusters. While both mX and DS dilute the H-bond density of mFA, they have opposite effects on the glass transition temperature (Tg) and structural relaxation time of mFA, with mX acting as a plasticiser and DS as an antiplasticiser. While the mFA-DS mixtures can be studied in the supercooled liquid regime at DS molar mass fraction as high as 0.9 without undergoing phase separation, the mFA-mX mixtures remain homogeneous at low temperatures only up to a mX molar fraction of 0.5. All homogeneous mixtures display a structural relaxation which shifts according to the Tg of the mixture, and a secondary relaxation which remains virtually invariant with respect to that of pure mFA. For mX molar fraction higher than 0.5, the mixtures phase-separate into almost pure crystalline mX domains and a mFA-rich amorphous phase. Upon partial crystallization the structural relaxation time and Tg of the remaining amorphous fraction shift to larger values, consistent with the increased effective mFA concentration. At the same time, the secondary relaxation time undergoes a dramatic shift of more than two decades. These findings allow identifying the secondary relaxation in the rigid-molecule mFA glass former as a local reorientational motion of a m-fluoroaniline moiety around one of its H-bonds, a rotation that is strongly affected if the mobility of the H-bond sharing species is quenched by crystallization.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Física::Física molecular
dc.subject.otherBinary phase diagram
dc.subject.otherH-bond network
dc.subject.otherGlass transition
dc.subject.otherDielectric spectroscopy
dc.subject.otherRigid molecules
dc.subject.otherJohari-Goldstein relaxation
dc.titleMixtures of m-fluoroaniline with apolar aromatic molecules: Phase behaviour, suppression of H-bonded clusters, and local H-bond relaxation dynamics
dc.typeArticle
dc.subject.lemacFísica molecular
dc.contributor.groupUniversitat Politècnica de Catalunya. GCM - Grup de Caracterització de Materials
dc.identifier.doi10.1016/j.molliq.2019.111998
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/abs/pii/S0167732219347580
dc.rights.accessRestricted access - publisher's policy
local.identifier.drac26427595
dc.description.versionPostprint (author's final draft)
dc.date.lift2021-12-15
local.citation.authorRomanini, M.; Del Barrio, M.; Macovez, R.; Capaccioli, S.; Tamarit, J. Ll.
local.citation.publicationNameJournal of molecular liquids
local.citation.volume296
local.citation.startingPage111998:1
local.citation.endingPage111998:8


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain