Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.707 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • DONLL - Dinàmica no lineal, òptica no lineal i làsers
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • DONLL - Dinàmica no lineal, òptica no lineal i làsers
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine learning for knowledge acquisition and accelerated inverse-design for non-Hermitian systems

Thumbnail
View/Open
s42005-022-01121-9.pdf (1,505Mb)
Share:
 
 
10.1038/s42005-022-01121-9
 
  View Usage Statistics
Cita com:
hdl:2117/380358

Show full item record
Ahmed, Waqas W.
Farhat, Mohamed
Staliunas, KestutisMés informacióMés informacióMés informació
Zhang, Xiangliang
Wu, Ying
Document typeArticle
Defense date2023-12-01
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 4.0 International
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 4.0 International
Abstract
Non-Hermitian systems offer new platforms for unusual physical properties that can be flexibly manipulated by redistribution of the real and imaginary parts of refractive indices, whose presence breaks conventional wave propagation symmetries, leading to asymmetric reflection and symmetric transmission with respect to the wave propagation direction. Here, we use supervised and unsupervised learning techniques for knowledge acquisition in non-Hermitian systems which accelerate the inverse design process. In particular, we construct a deep learning model that relates the transmission and asymmetric reflection in non-conservative settings and propose sub-manifold learning to recognize non-Hermitian features from transmission spectra. The developed deep learning framework determines the feasibility of a desired spectral response for a given structure and uncovers the role of effective gain-loss parameters to tailor the spectral response. These findings offer a route for intelligent inverse design and contribute to the understanding of physical mechanism in general non-Hermitian systems.
CitationAhmed, W. [et al.]. Machine learning for knowledge acquisition and accelerated inverse-design for non-Hermitian systems. "Communications Physics", 1 Desembre 2023, 
URIhttp://hdl.handle.net/2117/380358
DOI10.1038/s42005-022-01121-9
ISSN2399-3650
Publisher versionhttps://www.nature.com/articles/s42005-022-01121-9
Collections
  • DONLL - Dinàmica no lineal, òptica no lineal i làsers - Articles de revista [318]
  • Departament de Física - Articles de revista [1.906]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
s42005-022-01121-9.pdf1,505MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina