Show simple item record

dc.contributor.authorRamful, Raviduth
dc.contributor.authorSakuma, Atsushi
dc.contributor.authorKimura, Hajime
dc.date.accessioned2020-03-26T16:15:51Z
dc.date.available2020-03-26T16:15:51Z
dc.date.issued2019
dc.identifier.isbn978-84-949194-7-3
dc.identifier.urihttp://hdl.handle.net/2117/181616
dc.description.abstractThe flexural stiffness of bamboo is inherently influenced by heterogeneous material characteristic owing to its unique hierarchical structure. In addition, low interfacial strength and unequal distribution of fibres lead to a complex fracture behavior in the material. This research study aims to probe into the limited durability of MADAKE bamboo (Phyllostachys bambusoides) by investigating its fracture mechanism through numerical simulation. The influence of functionally graded material (FGM) on the fracture behavior of bamboo culm was evaluated. A half-solid cylindrical model consisting of a rigid section and a 4-layered wall section was simulated in pure bending mode on LS-DYNA. The effects of material homogeneity and inhomogeneity were replicated by inputting elastic and orthotropic-elastic material data comprising of longitudinal to flexural stiffness ratio. These ratios were derived from experimental results of three-point flexural test. Analysis of results, based on maximum principal strain, showed that the homogeneous model displayed fracture characteristics similar to conventional elastic material. In contrast, the inhomogeneous model displayed maximum principal strain on the lateral surface corresponding to fracture mode of bamboo culms observed in nature. Numerical study of material heterogeneity is a step further in understanding the fracture mechanics of functionally graded materials.
dc.format.extent9 p.
dc.language.isoeng
dc.publisherCIMNE
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Mètodes en elements finits
dc.subject.lcshFinite element method
dc.subject.lcshPlasticity -- Mathematical models
dc.subject.otherMadake Bamboo, Inhomogeneous, Fracture, Pure Bending
dc.titleDurability evaluation of madake bamboo by FE analysis of fracture with consideration of fibre direction
dc.typeConference report
dc.subject.lemacElements finits, Mètode dels
dc.subject.lemacPlasticitat -- Models matemàtics
dc.subject.lemacPlasticitat
dc.rights.accessOpen Access
local.citation.contributorCOMPLAS XV
local.citation.publicationNameCOMPLAS XV : proceedings of the XV International Conference on Computational Plasticity : fundamentals and applications
local.citation.startingPage360
local.citation.endingPage368


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder