Show simple item record

dc.contributor.authorAichholzer, Oswin
dc.contributor.authorHackl, Thomas
dc.contributor.authorHoffmann, Michael
dc.contributor.authorHuemer, Clemens
dc.contributor.authorPór, Attila
dc.contributor.authorSantos, Francisco
dc.contributor.authorSpeckmann, Bettina
dc.contributor.authorVogtenhuber, Birgit
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada IV
dc.date.accessioned2012-09-25T10:39:59Z
dc.date.created2013-01
dc.date.issued2013-01
dc.identifier.citationAichholzer, O. [et al.]. Maximizing maximal angles for plane straight-line graphs. "Computational geometry: theory and applications", Gener 2013, vol. 46, núm. 1, p. 17-28.
dc.identifier.issn0925-7721
dc.identifier.urihttp://hdl.handle.net/2117/16559
dc.description.abstractLet G=(S,E) be a plane straight-line graph on a finite point set S⊂R2 in general position. The incident angles of a point p∈S in G are the angles between any two edges of G that appear consecutively in the circular order of the edges incident to p. A plane straight-line graph is called φ-open if each vertex has an incident angle of size at least φ. In this paper we study the following type of question: What is the maximum angle φ such that for any finite set S⊂R2 of points in general position we can find a graph from a certain class of graphs on S that is φ-open? In particular, we consider the classes of triangulations, spanning trees, and spanning paths on S and give tight bounds in most cases.
dc.format.extent12 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Aeronàutica i espai
dc.subject.lcshGeometry, Plane
dc.subject.lcshTriangulation
dc.titleMaximizing maximal angles for plane straight-line graphs
dc.typeArticle
dc.subject.lemacTriangulació
dc.contributor.groupUniversitat Politècnica de Catalunya. DCCG - Grup de recerca en geometria computacional, combinatoria i discreta
dc.identifier.doi10.1016/j.comgeo.2012.03.002
dc.description.peerreviewedPeer Reviewed
dc.rights.accessRestricted access - publisher's policy
drac.iddocument10872325
dc.description.versionPostprint (published version)
dc.date.lift10000-01-01
upcommons.citation.authorAichholzer, O.; Hackl, T.; Hoffmann, M.; Huemer, C.; Pór, A.; Santos, F.; Speckmann, B.; Vogtenhuber, B.
upcommons.citation.publishedtrue
upcommons.citation.publicationNameComputational geometry: theory and applications
upcommons.citation.volume46
upcommons.citation.number1
upcommons.citation.startingPage17
upcommons.citation.endingPage28


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 3.0 Spain