DSpace DSpace UPC
 English   Castellano   Català  

Treballs academics UPC >
Màsters Oficials >
Master in Artificial Intelligence - MAI (Pla 2006) >

Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/2099.1/15843

Arxiu Descripció MidaFormat
x_cortes.pdf1,54 MBAdobe PDFVeure/Obrir

Títol: Graph indexing and retrieval based on graph prototypes
Autor: Cortés Llosa, Xavier
Tutor/director/avaluador: Serratosa Casenelles, Francesc
Universitat: Universitat Politècnica de Catalunya
Matèries: Àrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Representació del coneixement
Graph theory
Image processing--Digital techniques
Information storage and retrieval systems
Grafs, Teoria de
Imatges--Processament--Tècniques digitals
Informació--Sistemes d'emmagatzematge i recuperació
Data: 22-jun-2012
Tipus de document: Master thesis
Resum: [ANGLÈS] Taking a query from a high number of data stored into a database, as fast as possible, is a recurrent problem in the field of computer sciences practically since its origins. At the existence of this problem, it’s necessary to add, moreover, the fact that actually databases contains data types of more diverse and unexpected character possible. Now we are not talking about originating databases which only contained sets of numbers or characters strings. (...) All that I want to make into the present work and I think that was achieved as far as possible, has been to develop and to present a methodology to carry out this process. The Metric Trees of prototypes are based on a well-known strategy, which is based on grouping the data stored in database at the smartest possible way. But also we has added the concept of a graph prototype. A structure that contains information of a set of instances represented by graphs, used until now for classification and recognition. In this thesis we have used graphs as representatives of elements that have to be queried in databases. Note that graphs have the capacity to represent complex objects, for this reason the number of graph databases is increasing. Due to in the literature appears different ways to build a prototype, the work presented here shows a comparative study between the main methods. Combining these two concepts, the Metric Tree and the graph prototype, we propose the construction of metric trees where the graph prototypes are routing nodes to help to decide the way to explore when we make a search in the tree. We have used Metric Trees to make classification and to find all instances that are lower than a maximum distance. (...)
[CATALÀ] El trobar-nos davant una gran quantitat de dades i tenir que fer cerques d’aquestes el més ràpid possible és un problema recurrent en el camp de les ciències de la computació pràcticament des dels seus orígens. A l'existència d'aquest problema, se li ha d’afegir, a més a més, el fet de que actualment les bases de dades emmagatzemen tipus de dades de la naturalesa més diversa i molts cops inesperada possible. Ja no parlem de les bases de dades originaries que únicament contenien números o cadenes caràcters. (...) El que he volgut en aquest treball i penso que en la mesura del que era possible s'ha aconseguit, és desenvolupar i presentar una metodologia per portar a terme aquest procés. Els Metric Trees de prototips, que es basen en la ja coneguda estratègia d'agrupar les dades que anem guardant a una base de dades de la forma més intel·ligent possible per no haver d’explorar totes les instàncies que tenim quan volem fer una cerca, però a més a més s'ha afegit el concepte de prototip. Una estructura, que agrupa la informació d'un conjunt d'instàncies, utilitzada fins ara per a fer classificació i reconeixement. Conjugant aquests dos conceptes, el de Metric Tree i el de prototip, plantejem la construcció d'arbres de cerca on els prototips siguin els nodes intermedis, que ens ajudin a decidir quin camí explorar quan volem fer una cerca sobre l'arbre. I utilitzant, aquests tant per a fer classificació com per a buscar totes les instàncies que estiguin una distància més petita d’una distància máxima. Tot això tenint present, que les dades amb que treballem són grafs, és a dir que la metodologia presentada, té la versatilitat de poder-se aplicar, a qualsevol tipus d'informació que es pugui representar d'aquesta manera. (...)
URI: http://hdl.handle.net/2099.1/15843
Condicions d'accés: Open Access
Apareix a les col·leccions:Master in Artificial Intelligence - MAI (Pla 2006)
Comparteix:



SFX Query

Aquest ítem (excepte textos i imatges no creats per l'autor) està subjecte a una llicència de Creative Commons Llicència Creative Commons
Creative Commons

 

Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius