Mostra el registre d'ítem simple

dc.contributor.authorSachot, Nadège
dc.contributor.authorCastaño Linares, Óscar
dc.contributor.authorMateos Timoneda, Miguel Ángel
dc.contributor.authorEngel López, Elisabeth
dc.contributor.authorPlanell Estany, Josep Anton
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Ciència dels Materials i Enginyeria Metal·lúrgica
dc.contributor.otherInstitut de Bioenginyeria de Catalunya
dc.date.accessioned2013-11-08T09:09:21Z
dc.date.available2013-11-08T09:09:21Z
dc.date.created2013-08-28
dc.date.issued2013-08-28
dc.identifier.citationSachot, N. [et al.]. Hierarchically engineered fibrous scaffolds for bone regeneration. "Journal of the Royal Society Interface", 28 Agost 2013, vol. 10, núm. 88, p. 1-5.
dc.identifier.issn1742-5689
dc.identifier.urihttp://hdl.handle.net/2117/20560
dc.description.abstractSurface properties of biomaterials play a major role in the governing of cell functionalities. It is well known that mechanical, chemical and nanotopo- graphic cues, for example, influence cell proliferation and differentiation. Here, we present a novel coating protocol to produce hierarchicallyengineered fibrous scaffolds with tailorable surface characteristics, which mimic bone extracellular matrix. Based on the sol–gel method and a succession of surface treatments, hollow electrospun polylactic acid fibres were coated with a silicon–calcium–phosphate bioactive organic–inorganic glass. Compared with pure polymeric fibres that showed a completely smooth surface, the coated fibres exhibited a nanostructured topography and greater roughness. They also showed improved hydrophilic properties and a Young’s modulus sixfold higher than non-coated ones, while remaining fully flexible and easy to handle. Rat mesenchymal stem cells cultured on these fibres showed great cellular spreading and interactions with the material. This protocol can be transferred to other structures and glasses, allowing the fabrication of var- ious materials with well-defined features. This novel approach represents therefore a valuable improvement in the production of artificial matrices able to direct stem cell fate through physical and chemical interactions
dc.format.extent5 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria dels materials
dc.subject.lcshBone regeneration
dc.subject.lcshBiomedical materials
dc.subject.otherFibres
dc.subject.otherFunctional coating
dc.subject.otherHybrid materials
dc.subject.otherNanostructures
dc.subject.otherTissue engineering
dc.titleHierarchically engineered fibrous scaffolds for bone regeneration
dc.typeArticle
dc.subject.lemacEnginyeria de teixits
dc.subject.lemacBiomaterials
dc.subject.lemacCiments ossis
dc.contributor.groupUniversitat Politècnica de Catalunya. BBT - Biomaterials, Biomecànica i Enginyeria de Teixits
dc.identifier.doi10.1098/rsif.2013.0684
dc.relation.publisherversionhttp://rsif.royalsocietypublishing.org/content/10/88/20130684
dc.rights.accessOpen Access
local.identifier.drac12867034
dc.description.versionPostprint (published version)
local.citation.authorSachot, N.; Castaño, O.; Mateos-Timoneda, M.A.; Engel, E.; Planell, J.
local.citation.publicationNameJournal of the Royal Society Interface
local.citation.volume10
local.citation.number88
local.citation.startingPage1
local.citation.endingPage5


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple