DSpace DSpace UPC
 Català   Castellano   English  

E-prints UPC >
Matemàtiques i estadística >
EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions >
Articles de revista >

Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/2117/931

Arxiu Descripció MidaFormat
9602jorba.pdf631,7 kBAdobe PDFThumbnail
Veure/Obrir

Títol: On the normal behaviour of partially elliptic lower dimensional tori of hamiltonian systems
Autor: Jorba, Angel Veure Producció científica UPC; Villanueva Castelltort, Jordi Veure Producció científica UPC
Data: 1996
Tipus de document: Article
Resum: The purpose of this paper is to study the dynamics near a reducible lower dimensional invariant tori of a finite-dimensional autonomous Hamiltonian system with $\ell$ degrees of freedom. We will focus in the case in which the torus has (some) elliptic directions. First, let us assume that the torus is totally elliptic. In this case, it is shown that the diffusion time (the time to move away from the torus) is exponentially big with the initial distance to the torus. The result is valid, in particular, when the torus is of maximal dimension and when it is of dimension 0 (elliptic point). In the maximal dimension case, our results coincide with previous ones. In the zero dimension case, our results improve the existing bounds in the literature. Let us assume now that the torus (of dimension $r$, $0\le r<\ell$) is partially elliptic (let us call $m_e$ to the number of these directions). In this case we show that, given a fixed number of elliptic directions (let us call $m_1\le m_e$ to this number), there exist a Cantor family of invariant tori of dimension $r+m_1$, that generalize the linear oscillations corresponding to these elliptic directions. Moreover, the Lebesgue measure of the complementary of this Cantor set (in the frequency space $\RR^{r+m_1}$) is proven to be exponentially small with the distance to the initial torus. This is a sort of ``Cantorian central manifold'' theorem, in which the central manifold is completely filled up by invariant tori and it is uniquely defined. The proof of these results is based on the construction of suitable normal forms around the initial torus.
URI: http://hdl.handle.net/2117/931
Apareix a les col·leccions:EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions. Articles de revista
Departaments de Matemàtica Aplicada. Articles de revista
Comparteix:


Stats Mostra les estadístiques d'aquest ítem

SFX Query

Aquest ítem (excepte textos i imatges no creats per l'autor) està subjecte a una llicència de Creative Commons Llicència Creative Commons
Creative Commons

 

Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius