DSpace DSpace UPC
 Català   Castellano   English  

E-prints UPC >
Matemàtiques i estadística >
EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions >
Articles de revista >

Empreu aquest identificador per citar o enllaçar aquest ítem: http://hdl.handle.net/2117/895

Arxiu Descripció MidaFormat
0103delshams.pdf1.83 MBAdobe PDFThumbnail
Veure/Obrir

Títol: Homoclinic billiard orbits inside symmetrically perturbed ellipsoids
Autor: Delshams Valdés, Amadeu Veure Producció científica UPC; Fedorov, Yuri Veure Producció científica UPC; Ramírez Ros, Rafael Veure Producció científica UPC
Data: 2000
Tipus de document: Article
Resum: The billiard motion inside an ellipsoid of ${\bf R}^{3}$ is completely integrable. If the ellipsoid is not of revolution, there are many orbits bi-asymptotic to its major axis. The set of bi-asymptotic orbits is described from a geometrical, dynamical, and topological point of view. It contains eight surfaces, called separatrices. The splitting of the separatrices under symmetric perturbations of the ellipsoid is studied using a symplectic discrete version of the Poincar\'e-Melnikov method, with a special emphasis in the following situations: close to the flat limit (when the minor axis of the ellipsoid is small enough), close to the oblate limit (when the ellipsoid is close to an ellipsoid of revolution around its minor axis) and close to the prolate limit (when the ellipsoid is close to an ellipsoid of revolution around its major axis). It is proved that any non-quadratic entire symmetric perturbation breaks the integrability and splits the separatrices, although (at least) sixteen symmetric homoclinic orbits persist. Close to the flat limit, these orbits become transverse under very general polynomial perturbations of the ellipsoid. Finally, a particular quartic symmetric perturbation is analyzed in great detail. Close to the flat and to the oblate limits, the sixteen symmetric homoclinic orbits are the unique primary homoclinic orbits. Close to the prolate limit, the number of primary homoclinic orbits undergoes infinitely many bifurcations. The first bifurcation curves are computed numerically.
URI: http://hdl.handle.net/2117/895
Apareix a les col·leccions:EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions. Articles de revista
Departaments de Matemàtica Aplicada. Articles de revista
Comparteix:


Stats Mostra les estadístiques d'aquest ítem

SFX Query

Aquest ítem (excepte textos i imatges no creats per l'autor) està subjecte a una llicència de Creative Commons Llicència Creative Commons
Creative Commons

 

Valid XHTML 1.0! Programari DSpace Copyright © 2002-2004 MIT and Hewlett-Packard Comentaris
Universitat Politècnica de Catalunya. Servei de Biblioteques, Publicacions i Arxius