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Abstract

MapReduce is a popular programming model for distributed processing of
large data sets. Apache Hadoop is one of the most common open-source imple-
mentations of such paradigm. Performance analysis of concurrent job executions
has been recognized as a challenging problem, at the same time, that may pro-
vide reasonably accurate job response time estimation at significantly lower cost
than experimental evaluation of real setups.

In this paper, we tackle the challenge of defining MapReduce performance
model for Hadoop 2.x. While there are several efficient approaches for modeling
the performance of MapReduce workloads in Hadoop 1.x, they could not be
applied to Hadoop 2.x due to fundamental architectural changes and dynamic
resource allocation in Hadoop 2.x. Thus, the proposed solution is based on
an existing performance model for Hadoop 1.x, but taking into consideration
architectural changes and capturing the execution flow of a MapReduce job by
using queuing network model. This way, the cost model reflects the intra-job
synchronization constraints that occur due the contention at shared resources.

The accuracy of our solution is validated via comparison of our model esti-
mates against measurements in a real Hadoop 2.x setup.
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1. Introduction

MapReduce-based systems are increasingly being used for large-scale data
analysis applications. Minimizing the execution time is vital for MapReduce as
for any data processing application, and accurate estimation of the execution
time is essential for optimizing. Therefore, we need to build performance mod-
els that follow the programming model of such data processing applications.
Furthermore, a clear understanding of system performance under different cir-
cumstances is the key to critical decision making in workload management and
resource capacity planning. Analytical performance models are particularly at-
tractive tools as they might provide reasonably accurate job response time at
significantly lower cost than experimental evaluation of real setups.
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Programming in MapReduce requires adapting an algorithm to two-stage
processing model, i.e., Map and Reduce. Programs written in this functional
style are automatically parallelized and executed on computing clusters. Apache
Hadoop is one of the most popular open-source implementations of MapRe-
duce paradigm. In the first version of Hadoop1, the programming paradigm
of MapReduce and the resource management were tightly coupled. In order
to improve the overall performance as well as the usefulness and compatibil-
ity with other distributed data processing applications, some requirements were
added, such as high cluster utilization, high level of reliability and availabil-
ity, support for programming model diversity, and flexible resource model [1].
Thus, the architecture of the second version of Hadoop has undergone signifi-
cant improvements, introducing YARN (Yet Another Resource Negotiator), a
separate resource management module that noticeably changes the Hadoop ar-
chitecture, which decouples the programming model from the resource manage-
ment infrastructure and delegates many scheduling functions to per-application
components. The cluster resources are now being considered as continuous,
hence there is no static partitioning of resources (i.e., a division between map
and reduce slots). Therefore, map and reduce tasks compete now for the same
resources. Clearly, it is impossible to apply the cost models relaying on such a
static resource allocation as in the first version of Hadoop, and it is necessary
to find other approaches.

In this paper, we address the challenges of defining an accurate performance
model for estimating the execution time of MapReduce workloads in Hadoop 2.x.
We analyze the approaches for Hadoop 1.x and the architecture of Hadoop 2.x
to propose the performance model. Our solution is based on the model proposed
for the first version of Hadoop in [1]. This model combines a precedence graph
model, which allows to capture dependencies between different tasks within a
single job, and queueing network model to capture the intra-job synchronization
constraints. Due to changes in the Hadoop architecture, we adapted that model
for Hadoop 2.x.

Contributions. The main contributions of this paper can be summarized
as follows:

• By analyzing the architecture of Hadoop 2.x, we identify cost factors that
potentially affect the cost of the MapReduce job execution.

• We theoretically define and implement a MapReduce performance model
for Hadoop 2.x that captures the precedence of different tasks of MapRe-
duce jobs as well as the synchronization delays due to shared resources.

• We evaluate the accuracy of our performance model by implementing a
cost estimation prototype and comparing the obtained estimates with real
MapReduce executions.

1https://hadoop.apache.org/docs/r1.2.1/; Accessed 15/01/2017
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2. Related work

We observe two groups of approaches for analyzing the performance of
MapReduce job for the first version of Hadoop. Performance models described in
Subsection 2.1 are static, as they do not take into account the queuing delays due
to contention at shared resources and the synchronization delays between differ-
ent tasks. In Subsection 2.2, we introduce two most important approaches for
constructing dynamic performance models for parallel applications and describe
a performance model proposed for Hadoop 1.x that takes into consideration the
queuing delays.

2.1. Static MapReduce Performance Models

There are significant efforts and important results towards modeling the task
phases in order to estimate the execution of a MapReduce job in Hadoop 1.x.
Herodotou proposed performance cost models for describing the execution of a
MapReduce job in Hadoop 1.x [2]. In his paper, performance models describe
the dataflow and cost information at the finer granularity of phases within the
map and reduce tasks. It captures the following phases of a Map task: read,
map, collect, spill, and merge. For a Reduce task, there are independent for-
mulas for shuffle phase, merge phase and reduce and write phases. In terms
of the Herodotou’s model, the overall job execution time is simply the sum of
the costs from all map and reduce phases. As we can see in these cost for-
mulas, there is a fix amount of slots per Map and Reduce tasks, since in the
first version of Hadoop, the number of resources for Map and Reduce jobs is
determined in advance and does not change. YARN completely departs from
the static partitioning of resources for maps and reduces, and there is no static
slot configuration. Thus, we cannot apply directly Herodotou’s cost formulas,
and it is necessary to find other approaches.

There has also been an effort for defining the lower and upper bounds of
the job completion time and provide the resource allocation to a job so that
it finishes within the required deadline. In [3], the authors proposed a frame-
work called ARIA (Automatic Resource Inference and Allocation for MapRe-
duce Envinronments) that for a given job completion deadline could allocate
the appropriate amount of resources required for meeting the deadline. This
framework consists of three inter-related components. The first component is
a Job Profile that contains the performance characteristics of application dur-
ing map, shuffle/sort and reduce stages. The second component constructs a
MapReduce performance model, that for a given job and its soft deadline esti-
mates the amount of resources required for its completion within the deadline.
The last component is the scheduler itself that determines the job ordering and
the amount of resources required for job completion. For estimating the job
completion time, authors applied the Makespan Theorem for greedy task as-
signment, which allows to identify the upper TUpJ and lower bounds TLowJ for
the task completion time as a function of the input dataset size and allocated

resources. According to the research TAvgJ =
TUp
J +TLow

J

2 is the closest estimation
of job completion time T. It was observed that the relative error between the
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predicted average time TAvgJ and the measured job completion time is less than

15%, and hence, the predictions based on TAvgJ are well suited for ensuring the
job completion within the deadline. Nevertheless, this model has significant
limitations that do not allow us to apply it to the second version of Hadoop.
As in Herodotou’s cost models, the proposed model uses a fixed amount of slots
per map and reduce tasks within one node.

There has also been an attempt of evaluating the impact of task scheduling
on system performance. However, current schedulers neither pack tasks nor
consider all their relevant resource demands. This results in fragmentation and
over-allocation of resources, and as a consequence, it decreases noticeably the
overall performance. Robert Grandl et al. present Tetris [4], a multi-resource
cluster scheduler, that packs tasks to nodes based on their requirements of all
resource types, which allows to avoid the main limitations of existing schedulers.
The objective in packing is to maximize the task throughput and speed up job
completion. Thus, Tetris combines both heuristics - best packing and shortest
remaining job time - to reduce average job completion time. Authors proved
that achieving desired amounts of fairness can coexist with improving cluster
performance. This scheduler was implemented in YARN and showed gains of
over 30% in makespan and job completion time. Based on the new scheduler, the
authors proposed a performance model that has several shortcomings. First of
all, fast solvers are only known for a few special cases with non-linear constraints,
meanwhile several of the constraints are non-linear: resource malleability, task
placement, and how task duration relates to the resources allocated at multiple
machines. Finding the optimal allocation is computationally very expensive.
Scheduling theory shows that even with eliminating the placement consider-
ations, the multidimensional bin packing problem is APX-Hard [5]. Secondly,
ignoring dependencies between tasks is unacceptable in case of MapReduce jobs,
where the shuffle/sort phase can start as the first map task is completed.

2.2. Dynamic MapReduce Performance Models

The main challenge in developing cost models for MapReduce jobs is that
they must capture, with reasonable accuracy, the various sources of delays that
a job may experience. In particular, tasks belonging to a job may experience
two types of delays: queuing delays due to the contention at shared resources,
and synchronization delays due to the precedence constraints among tasks that
cooperate in the same job - map and reduce phases. There are two main tech-
niques to estimate the performance of workloads of parallel applications that
natively do not take into account the synchronization delays. One such tech-
nique is Mean Value Analysis (MVA) [6],[7], which takes into consideration only
task queueing delays due to sharing of common resources. Thus, it cannot be
directly applied to workloads that have precedence constraints, such as the syn-
chronization among map and reduce tasks belonging to the same MapReduce
job. Alternative classical solution is to jointly exploit Markov Chains for rep-
resenting the possible states of the system, and queuing network models, to
compute the transition rates between states [8], [9]. However, such approaches
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do not scale well since the state space grows exponentially with the number of
tasks, making it impossible to be applied to model jobs with many tasks, which
is commonly the case of MapReduce jobs.

Vianna et al. in their work [1] proposed a performance model for MapReduce
workloads, which is based on a reference model [10]. Given a tree specifying the
precedence constraints (i.e., precedence tree) among tasks of a parallel job as
input, the reference model applies an iterative approximate MVA algorithm to
predict performance metrics (e.g., average job response time, resource utiliza-
tion, and throughput). The reference model allows different types of precedence
constraints among tasks of a job, specified by simple task operators, such as
parallel or sequential execution. However, this model cannot be directly applied
to MapReduce workload due to the fact that in a MapReduce job the beginning
of a shuffle phase in a reduce task depends on the end of the first map task.
The model proposed in [1] enhances the reference model as follows:

1. It explicitly addresses the synchronization delays due to precedence con-
straints among tasks from the same job;

2. It takes into account queuing delays due to contention at shared resources;

3. It proposes an alternative strategy to estimate the average response time
of subsets of the tasks belonging to a MapReduce job, which leads to
more accurate estimates of a job’s average response time. Authors use the
Herodotou’s static cost model for initialization the task durations.

According to the model validation results, the proposed model produces
estimates of average job response time that deviate from measurements of a
real execution by less than 15%.

Although this model does not capture the dynamic resource allocation and
it assumes a fixed amount of threads to process map and reduce tasks per node
as one of the input parameters, it has important advantages in comparison with
previous models. First of all, unlike Herodotous’s model that does not capture
resource contention between tasks, this model is taking into account the queuing
delays due to the contention at shared resources. Secondly, it is able to capture
the synchronization delays introduced by the communication between map and
reduce tasks (ARIA and Tetris are not considering this property of MapReduce
job execution).

3. Architecture Analysis

In this section, we analyze the architecture and components of Hadoop 2.x
in order to identify the factors that affect the cost of executing MapReduce jobs.

3.1. Running Example

To illustrate our approach and facilitate the explanations throughout the
paper, we introduce a running example. Let us simply assume that we have
n = 3;m = 4; r = 1, where n - total number of nodes, m - number of containers
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required for map tasks, and r - number of containers required for reduce tasks,
and all nodes have the same capacity. Using such a scenario, we will illustrate
the main steps of our approach.

3.2. Main components of the YARN module

In the second version of Hadoop, the YARN module appeared and changed
the architecture significantly. It is responsible for managing cluster resources
and job scheduling. In the previous versions of Hadoop, this functionality was
integrated in the MapReduce module, where it was realized by the JobTracker2

component. The JobTracker was responsible for scheduling, resource manage-
ment, monitoring and re-execution of failed tasks, reporting job status to users,
recording audit logs, aggregation of statistics, user authentication, and many
others functions. The great amount of responsibilities caused limitation of scal-
ability. The fundamental idea of YARN is to split the two major functionalities
of the JobTracker, resource management and task scheduling/monitoring in
order to have a global ResourceManager, and application-specific Application-
Master. By separating resource management functions from the programming
model, YARN delegates many scheduling-related tasks to per-job components
and completely departs from the static partitioning of resources for maps and re-
duces, considering the cluster resources as a continuum, which brings significant
improvements to cluster utilization.

Figure 1: Job execution process in YARN [11]

YARN consists of three main components:

• Global Resource Manager (RM) per cluster, executing on the master node.

• Application Master (AM) per job

• Node Manager (NM) per slave node

2https://hadoop.apache.org/docs/r1.2.1/api/org/apache/hadoop/mapred/JobTracker.html
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RM runs as a daemon on a dedicated machine and arbitrates all the available
resources among various competing applications. We will not go in detail of all
components of RM 3 and will focus on the most important ones:

• Scheduler, which is responsible for allocating resources to the various ap-
plications that are running.

• Application Manager Service that negotiates the first container (logical
bundle of resources bound to a particular node) for the Application Mas-
ter. AMs are responsible for negotiating resources with the RM and for
working with the NMs to start, monitor, and stop the containers.

Based on the core functionalities of YARN components, the general schema
of job execution process is presented in Figure 1. It starts when a client submits
a request to the RM for executing an application (1). The AM registers with
the RM through AM Service and is started in the container that AM Service
dedicated for it (2). Then, the AM requests containers from the RM to per-
form the actual work (3). Once the AM obtains containers, it can proceed to
launch them by communicating to a NM (4). Computation takes place in the
containers, which keep in contact with the AM (5). When the application is
complete,the AM should unregister from the RM (6).

3.3. Resource management in Hadoop 2.x

For performance model construction, it is necessary to understand in detail
the resource request process. AM needs to figure out its own resource require-
ments, which can be:

(a) Static. If the resource requirements are decided at the time of application
submission, and when the AM starts running, there is no change to the
resource requirement that specification. In case of Hadoop MapReduce,
the number of map tasks is based on the input splits (i.e., HDFS chunks),
and the number of reducers on a user-defined parameter. Thus, the total
number of mappers and reducers is fixed before the application submission.

(b) Dynamic. When dynamic resource requirements are applied, the AM may
choose how many resources to request at run time based on criteria such
as user hints, availability of cluster resources, and business logic.

Once a set of resource requirements is clearly defined, the AM can begin
sending the requests in a heartbeat message to the RM. Based on the task
requirements, the AM calculates how many containers it needs and requests
them from the RM via a list of ResourceRequest objects. The ResourceRequest
object for the running example from Subsection 3.1 is presented in Table 1. In
this ResourceRequest object, containers can have different priorities, in which
they will be served by the RM. There is no cross-application implication of

3http://hortonworks.com/blog/apache-hadoop-yarn-resourcemanager/

7

http://hortonworks.com/blog/apache-hadoop-yarn-resourcemanager/


Number of
containers

Priority Size
Locality

constraints
Task type

2 20 x n1 map
2 20 x n2 map
1 10 x * reduce

Table 1: ResourceRequest Object

priorities. According to the source code of MapReduce AM 4, it assigns a
higher priority to containers needed for the Map tasks and a lower priority for
the Reduce tasks’ containers, with default priority values equal to 20 and 10
respectively.

One thing to note is that containers may not be immediately allocated to
the AM, which does not imply that the AM should keep on asking the pending
count of required containers. Once an allocated request has been sent, the AM
will eventually allocate the containers based on cluster capacity, priorities and
the scheduling policy. The AM should request for containers again if and only
if its original estimate changes and needs additional containers.

3.4. Job scheduling in Hadoop 2.x

There is another characteristic in terms of how the scheduling of these re-
sources happens:

(a) Resource usage follows a static all-or-nothing model, when all containers
are required to run together. For example, if AM asks for n containers,
the job will start only when AM receives exactly n containers.

(b) Resource usage changes elastically, depending on the availability of re-
sources. In this case, the job starts even if AM receives less than the
required number of containers.

lifecycles

scheduled assigned completed

scheduled assigned completedpending

Figure 2: Lifecycle of a map task

lifecycles

scheduled assigned completed

scheduled assigned completedpending

Figure 3: Lifecycle of a reduce task

Thus, for the cost model construction, it is necessary to understand the way to
distribute containers for tasks within different nodes. By analyzing the source
code of MapReduce5, we observed that map and reduce tasks have different
lifecycles presented in Figure 2 and Figure 3, respectively.

Vocabulary Used:

• pending → requests which are not yet sent to RM.

• scheduled →requests which are sent to RM, but not yet assigned.

4Package org.apache.hadoop.mapreduce.v2.app.rm; RMContainerAllocator class
5Package org.apache.hadoop.mapreduce.v2.app.rm; RMContainerAllocator.java class
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• assigned → requests which are assigned to a container.

• completed → requests for which the container has completed the execution.

Furthermore, the AM can do a second level of scheduling and assign its con-
tainers to whichever task that is part of its execution plan. Thus, resource
allocation in YARN is late binding. The AM is obligated only to use resources
as provided by the container, but it does not have to apply them to the logical
task for which it originally requested the resources. Thus, the MapReduce AM
takes advantage of the dynamic two-level scheduling. When the AM receives a
container, it matches that container against the set of pending tasks, selecting
a task with input data closest to the container, first trying data local tasks, and
then falling back to rack locality.

4. Proposed Solution

As a basis of our solution, we decide to take the performance model for
MapReduce workloads proposed for Hadoop 1.x [1]. The main challenges of
adapting the existing performance model to the architectural changes of Hadoop
2.x are: (1) the construction of the precedence tree, taking into consideration
the dynamic resource allocation as opposed to the predefined slot configura-
tion per map and reduce tasks in the Hadoop 1.x, and (2) how to capture the
synchronization delays introduced by the pipeline that occur among maps and
shuffle phase of the reduce tasks.

Notation Input parameter
Configuration parameters

numNodes Number of nodes
cpuPerNode Number of CPU per node
diskPerNode Number of disks per node

Workload parameters

Si,k
Residence time for tasks of class i
in the service center k

AvgResponseT imei Response time for tasks of class i
|M | Number of map tasks
|R| Number of reduce tasks

MaxMapPerNode
Maximum number of
containers per node for
map tasks (from AM configuration)

MaxReducePerNode
Maximum number of
containers per node for
reduce tasks (from AM configuration)

Table 2: Input parameters
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4.1. Input Parameters

The input parameters for our model are presented in Table 2. We consider
2 types of resources (service centers): CPU&Memory and Network. The overall
number of task classes C is 3 (i.e., map, shuffle-sort, and merge). We would like
also to emphasize the difference between the response time and residence time
of a task. The average response time is the total time that a task spends in the
cluster, while the residence time of task class i on service center k is the average
amount of time that a task of class i spends using the corresponding resource k
during its execution (i.e., it does not include queuing delays).

4.2. Modified Reference ModelPerformance_model_general_new

Start End

A1: Initialize
A6: Apply

Convergence
Test

A3: Estimate
the intra and

inter job's
overlap factors

A4: Estimate
task response

time

Converged?
A7: Build

TimeLine for
the whole
workload

A2:
Construct

Precedence
Tree

A5: Estimate
the average

job response
time

No

Yes

Figure 4: The main steps of Modified Reference Model [10]

We build our performance model on top of reference model proposed by
Vianna et al. [1]. Bellow, we describe the main steps of the algorithm and the
assumptions we consider in our approach.

Suppose a system with C task classes and K service centers. Let ~N be a
vector, whose i-th component indicates the number of tasks of class i in the
system; Sjk is the average demand of class j ∈ C task on service center k ∈ K
(i.e., the average residence time).

The main steps of the algorithm are presented in Figure 4, which consists
of 7 main activities: A1-A7. We start by initializing the average residence time
of each type of task at each service center and the average response time of
each task in the system. Then, based on the average response time of each
individual task, the timeline for one job is constructed applying Algorithm 1.
Using the obtained timeline, the precedence tree is constructed, capturing the
synchronization delays introduced by map tasks and shuffle-sort phase of reduce
tasks. The next step is to take into account the effects of the queuing delays
by factors representing the overlap in the residence times of tasks belonging to
the same job (intra-job overlap) and tasks belonging to different jobs (inter-job
overlap). These overlap factors produce the new estimates of task average re-
sponse time. The final step applies the convergence test on the new estimates
of average response time. In case that the convergence test fails, we return
to the construction of precedence tree step to build a new, and more accurate
precedence tree based on the estimates of task response time obtained during
the previous iteration. In case that current estimates are close enough to the
previous ones, the algorithm converges, and as a result, a final job average re-
sponse time and tasks response time are obtained. Finally, in step A7, using the
obtained estimates, we construct the final timeline for the whole workload to
estimate the total execution time. In the following subsections, we explain the
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activities of the modified MVA algorithm. In particular, we extensively explain
our modification of precedence tree construction procedure (A2) and estimation
of average job response time (A5).

A1: Initialization of task response time
Initialization activity consists of two sub activities that can run in parallel:

initializing the average residence time of each type of task at each service center,
and the average response time of each task in the system. For initializing the
residence time, we take the average of residence time from the history of corre-
sponding real Hadoop job executions. To initialize the tasks response time, we
can apply the following approaches:

(a) Using sampling techniques - taking the average of task response time from
job profile.

(b) Obtaining them from the existing static cost models, for example, from
Herodotou’s cost models [2] (we can assume that first all map tasks will
be executed, then reduce tasks). Thus, we will give all available resources
to the map tasks and then to the reduce tasks.

According to our experiments, the second approach leads to faster algorithm
convergence due to more accurate response time initialization and, as a conse-
quence, less number of iterations of the algorithm. To confirm this, we further
experimented with different errors added to the initial task duration obtained
from the Herodotou’s cost model. The results are presented in Figure 5, where
delta(t) is a percentage value we added to the initial task duration obtained
from Herodotou’s cost model. Indeed, the results show that the smaller the
error is in the initial data, the faster will the algorithm converge. We would like
to stress the robustness of this approach, as the potential error in the initial
values does not affect the final obtained value. Thus, in our model, we use the
second approach, while it still remains robust to other initialization methods.

27
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Figure 5

A2: Building precedence tree
In a precedence tree, each leaf represents a task and each internal node is an
operator describing the constraints in the execution of the tasks. To represent
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Figure 6: Precedence Tree

the execution flow of a MapReduce job, we will consider a binary precedence
tree built from 2 types of primitive operators: serial (S) and parallel-and (P ).
The serial operator is used to connect tasks that run sequentially, whereas the
parallel operator connects tasks that run in parallel. An example of a precedence
tree is presented in Figure 6.

The main goal of building the precedence tree is to capture the execution
flow of the job, identifying the parallel or serial order of execution of individual
tasks and their inter-dependencies. Based on new estimates for task response
time that we obtain in step A4, we rebuild the precedence tree at each iteration
of the algorithm. The complexity analysis of building a precedence tree can be
found in Subsection 4.3.

The precedence tree depends on the response time of individual tasks that
belong to one job and is built based on the timeline representing job’s tasks
execution inside the cluster. The timeline construction procedure is presented
below.

Timeline Construction
For the sake of simplicity, we consider in the explanations a distributed clus-

ter with a set of computing nodes equal to numNodes, all of them having the
same technical characteristics (this can be easily generalized to heterogeneous
clusters). The workload is composed of N MapReduce jobs executing concur-
rently in the system. Each job Ji has |Mi| map tasks and |Ri| reduce tasks.
We are working at the granularity of complete map tasks without distinguishing
different phases (like it was done in Herodotou’s cost model [2]). As a partial
sort is performed before each shuffle, we group each pair of sort and shuffle in a
single subtask called shuffle-sort. After all partial sorts are finished, a final sort
is executed, followed by the final phase of reduce tasks that applies the reduce
function. We group the final sort and the reduce function into one merge sub-
task. Thus, according to our terminology, the reduce task is divided into two
kinds of subtasks: shuffle-sort and merge.

Based on the architectural analysis (see Section 3), the core factors that
influence the timeline construction process are related to the job scheduling and
to the resource management system, and can be defined as following:

1. RM Scheduler. We assume that RM uses the Capacity scheduler, which
is the default scheduler of the Hadoop YARN distribution. The fundamen-
tal unit of the Capacity scheduler is a queue. Without loss of generality, we
assume a single, root queue, thus, resource allocation among jobs will be
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in the FIFO order (i.e., the priority will be given to the first job requesting
the resources).

2. AM Scheduler. Due to architectural changes, some responsibilities of
job scheduling are delegated to the AM, thus we have to determine the way
the AM distributes containers for tasks among different nodes. According
to findings in Subsection 3.4, map and reduce tasks have different lifecy-
cles that we need to take into account during the timeline construction
procedure (see Figures 2 and 3).

3. Binding of resources. We are assuming that AM will use requested
containers for the same type of tasks as originally requested, thus we
ignore the late binding functionality of AM.

4. Task priorities. Considering the findings in Subsection 3.2 related to
different priorities for map and reduce tasks, AM provides a container
first to map task and after to reduce task.

5. Locality constraints. Assigning containers for map tasks mainly de-
pends on whether we consider or not locality constraints (configuration
parameter). In our model, we consider the node locality constraints for
map task, but ignore the locality constraints for reduce tasks. In case of
ignoring the locality constraints, we distribute containers for tasks uni-
formly among nodes with the highest remaining capacity. Assuming that
all nodes have the same capacity, we will take into consideration the oc-
cupancy rate and assign containers to the nodes with the lowest value.

6. Task dependencies. Container allocation process for reduce tasks de-
pends on the assignment of map tasks. First, it is necessary to check if all
map tasks have been assigned. If yes, we schedule all reduce tasks (map
output locality is not taken into consideration, request asks for a container
on any host/rack). Otherwise, scheduling of reduce tasks is based on the
slow start configuration parameter. By default, schedulers wait until some
percentage of map tasks have completed before scheduling reduce tasks for
the same job.

The last consideration is how to divide the timeline into phases. Tasks
within the same phase can be executed one after another or in parallel, but
tasks that belong to different phases are always executed sequentially, due to
synchronization barriers. Tasks belong to different phases, if they are dependent
and have precedence constraints. For example, shuffle-phase of reduce tasks
cannot start before certain percentage of map tasks finish.

As a summary, we explain below our algorithm for the timeline construction
of one job. We start in lines 1-7 distributing containers for map tasks. In
case the slow start is set, the beginning of the shuffle-phase of reduce task will
coincide with the end of map task on the node that has the lowest occupancy
rate. Thus, shuffling starts as early as possible. In the opposite case, the shuffle-
phase of reduce task starts as late as possible (lines 8-12). Further, in lines 13-24
we distribute containers for reduce tasks.
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Algorithm 1 Timeline Construction for one job

Input: M - set of map tasks, R - set of reduce tasks
Output: TL - timeline
{st – startTime; d – duration;
sd – shuffleDuration; an – assingedNode; }

1: for m ∈M do
2: i := min(TL);
3: m.an := i;
4: m.st := last(TL[i]);
5: m.et := m.st+m.d;
6: TL[i] := TL[i] ∪ {m};
7: end for
8: if (slow start) then
9: border := TL[first(TL)];

10: else
11: border := TL[last(TL)];
12: end if
13: for r ∈ R do
14: i := min(TL);
15: r.an = i;
16: r.st := max(TL[i], border);
17: for m ∈M do
18: if (m.an <> i) then
19: r.d := r.d+ m.sd

|R| ;

20: end if
21: end for
22: r.et := r.st+ r.d;
23: TL[i] := TL[i] ∪ {r};
24: end for
25: Return TL;

Based on the obtained timeline, the precedence tree can be constructed
uniquely up to graph isomorphism. In order to reduce the depth of precedence
tree, we balance it.

Example. Applying the timeline construction algorithm to the running ex-
ample from Section 3, we obtain the timelines, that are presented in Figure
7. In both cases, we first assign map tasks as they have higher priorities than
reduce tasks. Assigning shuffle-phases of reduce tasks depends on the slow start
configuration parameter. Without slow start (a), we are waiting while all map
tasks finish, while with slow start (b), we can start assigning shuffle-phases of
the reduce tasks, if a certain amount of map tasks was finished (e.g., 25%).
Thus, based on the timeline assuming that we do not have slow start (a), we
are able to construct the precedence tree depicted in Figure 8.
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(a) without slow start (b) with slow start (25%)

Figure 7: Example of timeline construction

Figure 8: Precedence Tree Example (without slow start)

A3: Estimation of the Intra- and Inter- job overlap factors

For a system with multiple classes of tasks, the queueing delay of task class
i due to task class j is directly proportional to their overlaps [12]. We consider

Figure 9: Intra- and inter-job overlaps

two types of overlap factors: the intra-job overlap factor αij∀i, j - taskID’s from
the same job, and inter-job overlap factor βkr∀k, r - taskID’s from different jobs.
In Figure 9, we provide an example for intra- and inter-job overlaps. We use
continuous line to present overlaps in the time execution between tasks from the
same job, and dash line to depict overlaps between tasks that belong to different
jobs.
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To estimate the overlap factors, we use the following formulas [10]:

αij =
LX(Ti,Tj)

RTi
, βkr = LI(Tk,Tr)

RTk
,

where LX(Ti, Tj) and LI(Tk, Tr) are the overlap time of (Ti, Tj) and (Tk, Tr);
RTi and RTk - average response time of task that belongs to the task class i
and k, respectively. The obtained overlap factors are used in the next step to
estimate a new value for task response time.

A4: Estimation of task response time
To predict the task response time, we apply modified approximate Mean

Value Analysis (aMVA) [10]. MVA is an efficient technique that allows us to
solve the queueing network models and obtain the mean values for tasks re-
sponse time. It is based on the relation between the mean waiting time and the
mean queue size of a system at the moment of arrival of the new job (i.e., having
one job less in the system). The algorithm for estimating the task response time
consists of 5 main steps that are presented in Figure 10. The detailed explana-
tion of aMVA can be found in [10].Estimate task response time

Start End

Estimate the Average
Response Time

in each service center
(N-1)

Estimate the Mean
Queueing Length in

each queueing center
(N-1)

Estimate the Average
Response Time in each

service center
(N)

Find the Total
Response Time

Calculate the Avarage
Queue Length in each

service center
(N)

Figure 10: The main steps for task response time estimation [10]

A5: Average Job Response Time Estimation
For estimating the job response time, we need to know the dependencies

between tasks (the precedence tree reflects them) and the estimations for the
task durations. Then, going from bottom of the precedence tree to the top, we
are estimating the durations for internal sequential and parallel nodes. In the
end, the estimation of duration for the root node will be the duration for the
whole job. As we always going from bottom to the top, the depth of precedence
tree influences on the error of job response time estimation. In order to reduce
the error, we balance the precedence tree.

There are 3 alternative approaches to estimate the job response time:

1. Fork/join-based [1]: We consider the execution of a parallel-phase as a
fork-join block, and use previously adopted estimates of the average re-
sponse time of fork/joins. One such estimate is the product of the k − th
harmonic function by the maximum average response time of k tasks [13].

RT = Hk ·max(Ti, Tj) - response time,

where Hk =
∑k
i=1

1
i - harmonic function,

k - is the number of child nodes
Since the precedence tree is a binary tree, Hk = 3

2 ,∀k. The intuition
behind this formula is the response time for a parent node equals to the
longest child response time plus possible delay (multiplication by 3

2 ).
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2. Tripathi-based [10]: To estimate the response time of P-rooted ans S-
rooted sub-trees, we approximate the distribution of response time of each
of its children by either an Erlang or a Hyperexponential distribution
depending on the coefficient of variation (CV = µ

σ ) of the response times
associated with each child node [10], [14]. We assume that the distribution
of X is Erlang type if its CV <= 1, and Hyperexponential if CV >= 1.
Knowing the distribution of leafs, we can determine the distribution type
(Erlang or Hyperexponential) and then the mean value of response time
for P and S [10].

3. The third approach is based on the assumption that task durations are
independent variables and have Gaussian distribution. Indeed, we empiri-
cally showed using Pearson’s Criterion, that durations of map and reduce
tasks have Gaussian distribution, at 95% significance level. Thus, given
the mean and variance of each leaf of the precedence tree, going from bot-
tom to top, we can find the mean and variance for internal, P and S nodes,
as mean and variance for functions of F = max(T1, T2) and F = T1 + T2,
respectively [10]. It is well known that F = T1 + T2 will also have the
Gaussian distribution with mean and variance equal to µ = µ1 + µ2,
σ2 = σ2

1 + σ2
2 , respectively. According to [15], the distribution of F =

max(T1, T2) can be approximated by the Gaussian distribution with mean
and variance equal to: µ(F ) = µ1Φ(µ1−µ2

θ ) + µ2Φ(µ2−µ1

θ ) + θφ(µ1−µ2

θ ),

and σ2(F ) = µ(F 2)− (µ(F ))2, where θ =
√
σ2
1 + σ2

2 − 2ρσ1σ2;
µ1, µ2 and σ2

1 , σ
2
2 - means and variances for T1 and T2;

Φ, φ - distribution and density functions for standard normal distribution;
µ(F 2) = (σ2

1 + µ2
1)Φ(µ1−µ2

θ ) + (σ2
2 + µ2

2)Φ(µ2−µ1

θ ) + (µ1 + µ2)θφ(µ1−µ2

θ );
This approximation is reasonable only when the difference between two
standard deviations is relatively small, thus, taking this into consideration,
we search for pairs with the closest variance value in order to approximate
the distributions of parallel nodes more accurately.

Example

This example illustrates the process during one phase. The timeline and
the corresponding precedence tree are presented in Figure 11.

First, we define the distributions of variables that correspond to the sum
of tasks per container:

• F1 = M1 +M2 +M3

• F2 = M4 +M5

• F3 = M6 +M7 +M8

• F4 = M9 +M10

The second step is to find, among obtained variables, pairs that have
the closest values of variance, and to approximate the max by Gaussian
distribution. In this example, those will be (F1, F3) and (F2, F4). Thus, we
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(a) Timeline (b) Precedence tree

Figure 11: Example of Timeline and corresponding Precedence tree

approximate the distribution ofmax(F1, F3) andmax(F2, F4) by Gaussian
distributions with mean and variance calculated as discussed above.

A6: Applying convergence test
During the convergence test, we are comparing the Total Response Time

from the previous iteration with the Total Response Time received in the current
one. In case that the difference is below a certain value (i.e., |RT curr−RT prev| ≤
ε), the algorithm finishes. Otherwise, we return to the precedence tree construc-
tion process and repeat activities A2-A6. We use ε = 10−7, which is the recom-
mended value for MVA [10]. Theoretically, this value provides a good trade-off
between the level of accuracy and the complexity of the algorithm, which we
empirically confirmed (with lower values of ε the job response time almost does
not change, meanwhile the number of iterations continues growing). The results
are presented in Figure 12.
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27.516

27.5165

27.517

27.5175

27.518

27.5185

27.519

27.5195

t,s
ec

epsilon

Figure 12: Dependency between ε value and job response time

A7: Building the final timeline
In order to build a timeline for the complete workload consisting of multiple jobs,
we iteratively apply Algorithm 1 for each job taking in into consideration the
initial assumption, that RM uses the Capacity scheduler with one root queue.
Thus, resource allocation among jobs will be in FIFO order (Algorithm 2).
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Algorithm 2 Timeline Construction for multiple jobs

Input: J – queue of jobs; N - set of cluster nodes
Output: TL – final timeline

1: for i := 1 to |N | do
2: TL[i] := ∅;
3: end for
4: for j ∈ J do
5: TL := Algorithm1(TL, J.M, J.R)
6: end for
7: Return TL;

4.3. Complexity Analysis

We can find the complexity of the proposed performance model by analyzing
the complexity of the MVA algorithm and the complexity of the precedence tree
construction.

According to [10], the MVA algorithm is computationally efficient, having a
complexity of O(T 2N2K), where T is the number of tasks in the job, N is the
number of jobs, K is the number of service centers.

The time complexity to build the precedence tree is equal to the complexity
of timeline construction. The cost to construct this timeline can be identified
by the time required to repeatedly search for the next task to finish until the
termination of all the tasks.

Let Ncontainers be the total number of containers in execution.
T = allMapTasks+ allShuffleSortTasks+ allMergeTasks;
Ncontainers = n×max(pMaxMapsPerNode, pMaxReducePerNode),

where n - the number of nodes; pMaxMapsPerNode,
and pMaxReducePerNode - the maximum number of containers for map and
reduce tasks respectively,

pMaxMapsPerNode =

⌊
TotalNodeCapacity

SizeOfContainerForMapTask

⌋

pMaxReducePerNode =

⌊
TotalNodeCapacity

SizeOfContainerForReduceTask

⌋

Thus, in the worst case, the time complexity to build a precedence tree at each
iteration is given by the search for m+ r(m+ 1) tasks in Ncontainers containers,
that is O(T ×Ncontainers) = O((m+ r(m+ 1))× (n×max(pMaxMapsPerNode,

pMaxReducePerNode))), where m, r -is the number of map and reduce tasks in
the job. The computational cost of the whole solution: O(T 2N2K) + O(((m +

r(m+1))×(n×max(pMaxMapsPerNode, pMaxReducePerNode)))×iterationNum).

As we can notice, the computational cost of the whole solution is dominated by
the MVA algorithm.

5. Evaluation

This section presents the results of a set of experiments we performed with
the proposed performance model. We provide the validation results from the
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comparison of our model against the measurements of the Hadoop 2.x real
setup. To evaluate the accuracy of our performance model regarding the typical
MapReduce jobs covering all parts of a MapReduce flow, we decided to use map-
and-reduce-input heavy jobs (WordCount6, Sort7) that process large amounts
of input data and also generate large intermediate data [16].

5.1. Experimental Setup

Each node in the cluster has the same technical characteristics:

• 2x Intel Xeon E5-2630L v2 a 2.40 GHz

• 128 GB Memory RAM

• 1 hard disk 1 TB SATA-3

• 4 Network Intel Gigabit Ethernet

We performed a set of experiments analyzing the workload response time
estimated with three different approaches in terms of the following parameters:

• the number of nodes: 4,6,8;

• the size of input data: 1GB, 5GB;

• the number of jobs that are executed concurrently in the cluster: 1,2,3,4.

For each experiment, we analyze the job response time fixing two out of three
parameters. Each experiment is repeated 5 times and the medians of response
time are plotted in the charts.

5.2. Results

All experiments have been done for 2 types of jobs: (a)Wordcount and (b)
Sort. We are depicting the response time values taking into account three ap-
proaches for estimating the job response time (Section 4). First, we evaluate
the accuracy of our performance model in terms of increasing number of nodes
in the cluster and a fixed workload, i.e., for each experiment, we fix the number
of concurrent jobs and the size of input data (see Figure 13 and Figure 14).

We can notice that the Fork/join based approach and the approach based on
normal distribution of tasks response time provide more accurate estimation of
job response time with error between 11% and 14,5%, while the Tripathi-based
approach shows an error between 18% and 22%. For 5GB input size, we obtain
the bigger value of an error: 14.5% and 22%, respectively. We observe that
the accuracy of our algorithm depends on the number of map tasks and not
directly on the size of input data. The observed differences in estimation errors
are thus related to the complexity (the maximal depth) of the precedence tree,
which is increasing with the higher number of map tasks. In order to prove
this hypothesis, we increase the number of map tasks without increasing the

6WordCount example from the Hadoop distribution: https://wiki.apache.org/hadoop/

WordCount
7Sort example from the Hadoop distribution: https://wiki.apache.org/hadoop/Sort
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(f) Block: 64MB; Input:5GB;#jobs: 1

Figure 13: Results for WordCount

input data size. Thus, we reduced the default block size for the map task from
128MB to 64MB and repeated the experiments. These results for WordCount
and Sort for the input data size equal to 5GB and number of jobs equal to 1
are presented in Figure 13 (f) and Figure 14 (f), respectively.

As showed by these results, experiments confirm our hypothesis, as we ob-
tained the biggest values of errors: 15%, 17% and 23% for Fork/join, Normal
Dist and Tripathi-based approaches, respectively. Although the accuracy does
not directly depend on the input size, the block size should be reasonably chosen
based on the size of input data and the cluster characteristics. As explained in
Section 4.2, A5, for reducing the maximal depth of the precedence tree and, as a
consequence, decreasing the error, we balance the constructed precedence tree.

The Fork/join approach and approach based on normal distribution of task
durations in our model produces accuracy improvements over the original model
for Hadoop 1 [1], on which we based our solution. For one job in the cluster we
obtain competitive error rate results (13.5% accuracy error against 15% in [1]).

In conclusion, we can notice that the Fork/join based approach and the ap-
proach based on normal distribution of task durations provide more accurate
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results than the Tripathi-based one, but with all three approaches we overesti-
mate the execution time.
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Figure 14: Results for Sort

6. Conclusions and Future Work

In this work, we tackled the challenge of creating a MapReduce perfor-
mance model for Hadoop 2.x, which takes into consideration queuing delays
due to contention at shared resources, and synchronization delays due to prece-
dence constraints among tasks that cooperate in the same job (map and reduce
phases). The modeling approach extends the solution proposed for Hadoop 1.x
in [1], where the execution flow of a job was presented by a precedence tree and
the contention at the physical resources were captured by a closed queuing net-
work. Our main contributions are the deep analysis of the Hadoop 2.x internals,
identifying the main architectural changes in Hadoop, and the creation of the
MapReduce performance model for Hadoop 2.x. In particular, considering the
identified changes in the architecture of Hadoop 2.x and taking into account the
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dynamic resource allocation, we created the method for timeline construction,
based on which the precedence tree is built. Moreover, we checked the type of
distribution for durations of map and reduce tasks and conclude that, unlike
the assumptions in [10], task durations have Gaussian distribution. Based on
this conclusion, we propose the third method for estimating the job response
time, which gives us better results than Tripathi-based approach.

We validated our model against the measurements obtained from the real
Hadoop setup for different number of jobs that were executed. Our experiments
showed the effectiveness of our approach: the average error of job response
time estimation for standard block size is in the range of 11% and 13.5%. Our
model can be used for theoretically estimating of the jobs response time at a
significantly lower cost than experimental evaluation of real setups. It can also
be useful for critical decision making in workload management and resource
capacity planning.

Our future plans focus on the tuning of provided performance model in order
to decrease the error of job response time estimation. We are also planning to
adapt our model to Hadoop 3.x 8. The most important change appeared in the
third version of Hadoop that can affect our model is the support for opportunis-
tic containers9. The main goal of opportunistic containers is to improve the
resource utilization and increase task throughput by dispatching the containers
to NMs before they can even start their execution.

Furthermore, we are planning to generalize our solution, building the frame-
work for cost estimation in distributed data processing engines, and instantiating
it to other systems like Apache Spark10 as well.
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