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Abstract

The finite strip method, widely employed in structural mechanics, is ex-
tended to solve acoustic and vibroacoustic problems. The acoustic part of the
formulation, including how to handle the most typical acoustic boundary con-
ditions and the fluid structure interaction, is presented. Several realistic prob-
lems where the three-dimensional domain of interest has extrusion symmetry
are solved. These examples illustrate the advantages of the method: it has
smaller computational costs than the finite element method and consequently
the analysed frequency range can be increased.

1 Introduction

The finite strip method (FSM) has been widely applied to structural analysis during
the past four decades [1, 2]. This numerical technique can be used for problems whose
geometry is constant along a coordinate axis and can be generated by extrusion of a
planar face. Some bridge platforms are the classical example where a geometrically
complex cross-section can be extruded along the bridge axis in order to generate the
whole geometry.

The main idea of the method is to use different interpolation functions at cross-
section level and along the extrusion direction. Piecewise functions with local support
that can be adapted to the geometrical complexity are used at the cross-section level.
On the contrary, global support functions are used along the extrusion direction. This
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significantly decreases the computational burden because fewer functions are needed
in the extrusion direction and three-dimensional problems can be solved with a cost
similar to two-dimensional problems.

Various aspects can break the extrusion symmetry of the problem. Different
boundary conditions can be reproduced by means of an adequate choice of the func-
tions used in the extrusion direction. Forces that do not satisfy the extrusion sym-
metry can be considered by an adequate integration of the force term.

The use of discretisation techniques such as the finite element method (FEM) or
the boundary element method (BEM) for acoustic and vibroacoustic problems is often
limited by high computational costs. These costs are caused by the fine discretisations
required in order to properly describe the pressure or vibration solution fields. The
wave length of the solution fields decreases for higher frequencies. This is the reason
why the FEM and the BEM are regarded as low-frequency modelling techniques.

The issue of computational costs becomes more important when dealing with three-
dimensional geometries. In those cases, the number of degrees of freedom drastically
increases. However, many problems in acoustics and vibroacoustics have a simple
geometry. This geometry can often be generated by extrusion. This is the case of
building acoustics where rooms almost always have more than one possible extrusion
direction and walls have a geometrically complex cross-section that is constant along
a direction.

For these reasons, the finite strip method can be viewed as a valid numerical
technique for three-dimensional acoustic and vibroacoustic problems with simple, but
usual in real life, geometries. The computational costs of the FSM are smaller than
the costs of a three-dimensional FEM calculation.

This geometric extrusion symmetry has been also exploited in vibration analyses
for structures that clearly have one dimension that is larger than the others (beams or
large rectangular plates for example). The vibration field is obtained by means of the
waveguide finite element method (WFEM). Details on the formulation can be found in
[3, 4]. The derivation of the waveguide finite elements is based on Hamilton’s principle.
They have been considered with several purposes: (i) obtain the vibration field in
infinite waveguides; (i) describe dispersion curves of several structural typologies
[5, 6]; (ii1) calculate the eigenmodes of the structure and afterwards use them to
perform a modal analysis [7].

The WFEM has also been used for fluid-structure interaction problems in waveg-
uides. In [8] the waveguide idea was used to develop a finite element based model.
The transmission of sound from the interior of rectangular air filled ducts was studied.
The ducts were considered unbounded and a mode-shaped pressure field was imposed
in the interior. This was then coupled with the structure modelled with plate elements
(without in-plane stiffness). The radiation into infinite acoustic domains was taken
into account by means of an intermediate layer of quadrangular acoustic waveguide el-
ements and a set of radiation eigensolutions from a cylindrical surface. The waveguide
finite elements are important here in order to perform the transition at cross-section
level from a rectangular shaped contour to a circular surface. By imposing the shape
of the internal pressure field (and assuming one-way coupling from the interior to the
exterior), this model enforces all the pressure and displacement fields to have the same
wave number along the extrusion direction. The generalisation of this hypothesis to



all transmission problem types would implie to assume that only forced transmission
occurs. In sound transmission problems, and especially in building acoustics, it is
also important to account for resonant transmission. This also includes eigenmodes
in the extrusion direction. The interaction between pressure and vibration waves
with different wave number along the extrusion direction or that are dephased due to
the problem dimensions and boundary conditions can also be relevant and should be
considered.

A similar idea is used in [9] in order to generate a set of eigensolutions along
the unbounded extrusion direction. This is afterwards used to obtain frequency-
dependent solutions by means of a modal superposition procedure. The interaction
between absorbing materials and air is also considered.

The fluid and fluid-structure interaction elements proposed in [10] are based on a
fluid velocity potential formulation. This model has been applied to the calculation
of the dispersion curves of water filled steel pipes.

All the works reviewed here coincide in the use of trigonometric functions in the
extrusion direction in order to reduce the computational cost of the problem. However,
the main difference between the FSM developed in [1] for structural analysis and the
WFEM concept used with dynamic and acoustic purposes in [3—8, 10] is the way how
the problem is solved. In the first case, the interest is focused on structures of finite
dimensions and with specific boundary conditions in the extrusion direction. The
finite strip elements are used in order to interpolate the displacement field. This field
can be enriched by reducing the element size or increasing the number of functions
(sines, cosines,...) considered. Both strategies lead to an increase of the number
of elements. Afterwards, the weak form of the problem is used in order to derive
the systems of linear equations to be solved. The unknowns are contributions to
the solution field without a clear physical meaning before their combination (post-
process). In the second case, some assumptions are needed in order to derive the
element formulation. In most of the cases a wave length of the solution along the
extrusion direction is imposed. Moreover, the extrusion direction is often assumed to
be infinite. This hypothesis usually reduces the size of the systems of linear equations
to be solved because only one possible wave in the extrusion direction is considered.
This provides a meaning to the obtained solution (without requiring major post-
processes), but limits the analysis to waveguides. An extension of the WFEM to
more general situations would require additional procedures and the above mentioned
advantages would be lost.

In this paper a finite strip formulation is presented for the fluid-pressure vibroa-
coustic problem. This falls within the first of the above mentioned tendencies. The
structural part of the problem is solved according to [I] and the interest is focused
here in the acoustic part and the fluid-structure interaction. The vibroacoustic prob-
lem is solved considering finite dimensions of the domains and without imposing a
wave length along the extrusion direction (pressure or vibration fields) or perform-
ing similar assumptions. This is important for the examples shown here, which are
oriented to the field of building acoustics and where the resonant response is always
relevant. The method is used in order to obtain the frequency-dependent response
or the eignfrequencies of the analysed systems. Special attention is paid to the most
typical boundary conditions used in building acoustics such as: (i) imposed normal
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velocities; (i7) absorbing boundaries (Robin boundary conditions); (i) fluid-solid
interaction.

The outline of the paper is as follows. The FSM formulation of the pressure-
displacement vibroacoustic equations is shown in Section 2. First the FSM formulation
of the acoustic problem is presented in Sections 2.2 and 2.3. Afterwards, the coupling
of acoustic domains with elastic structures is developed in Sections 2.4 and 2.5. The
application examples are shown in Section 3 and include (i) frequency response of
acoustic domains in Section 3.1 and (%) vibroacoustic problems in Section 3.2. All of
them are in the field of building acoustics. The paper is closed with the conclusions
of Section 4.

2 Formulation

2.1 The vibroacoustic problem

The developments, discussion and the examples shown here are based on the steady
harmonic pressure-displacement vibroacoustic equations [11, 12]:

Acoustic domain:

A p(x) + E*p(r) = — z”: 1w PR 0 (T m, ) in Qp (1)
8];—(5) = —ippwu, onl'y (2)
8];(: = —ippwAp(z) onl'rg  (3)
8’5%) = prw?(u(z) - n) onTps  (4)
Solid domain:
V- o(z) = —pswu(z) in Qs (5)
o(x)=C:e¢ in Qg (6)
o(x) -n=tx,t) onI'y (7)
u(z) =u(z)p onI';, (8)
o(x) -n=—p(z)n on'rps  (9)

The acoustic part of the problem in the domain Q2 is governed by the Helmholtz
equation (1). p(z) is the phasor of acoustic pressure, k is the wave number (k = w/c =
27 f /¢, where f is the frequency, w the angular frequency and ¢ the speed of sound in
the fluid of density pr). The presence of n,s point sound sources at positions z,, with
source strengths ¢, is considered ([¢,,] = volume/time). v, is the velocity imposed
on the Neumann contour I'y and A the admittance of the Robin contour I'g. This
models the acoustic absorption.

The solid domain g is usually considered as a linear elastic solid. u(z) is the
phasor of solid displacement, o is the Cauchy stress tensor, ps is the density of the
solid, t is the traction vector (forces acting on the solid contour I'};, according to
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Eq. (7)) and u(z)p are the imposed displacements in the solid contour I'},. The strain
of the solid is: € = Vou(z) = 1(Vu(z)” +u(z)VT). n is the exterior normal for every
domain.

Continuity of normal velocities and pressures on the interface I'pg is imposed in
order to couple the solid and fluid domains.

The numerical formulation of this problem by means of the FEM or the BEM

is reviewed in [13, 14]. Various applications of technological interest can be found
in the literature. The sound transmission of walls has been studied by means of
the FEM in [15] and the BEM in [I6]. Very often the applications of numerical

techniques in building acoustics are limited to the low-frequency range (due to the
large computational costs) or avoid the modelling of the whole problem by means of
simplifications (i.e. radiation of sound in unbounded domains).

2.2 The finite strip method for the Helmholtz equation

By applying the usual weighted residual approach, the strong form (1) is transformed
into the weak form

/ Vp~V<de+/ ipFwprdF—/ k*podl’ =
QF I'r QF

/ iprqué(x,xm)gon—/ iprwu,edl (10)
QF FN

m=1

where ¢ is the test function. This is our starting point in order to obtain the finite strip
formulation for an acoustic domain with extrusion symmetry such as the one shown in
Fig. 1. Capital letters are used in order to identify global coordinates/displacements
while small letters are used for the local variables (in the finite elements). Z = z is
the coordinate assigned to the extrusion direction.

The pressure field is interpolated by means of strip functions. These can be un-
derstood as standard FEM interpolation functions N, (z,y) [17] in the XY plane,
multiplied by appropriate interpolation functions Z () in the z direction

ng nfodes
plx) = Z Z N (z,y) 2, (2)pjs ; pis€C ;5 N :R*=R (11)
s=0 j=1
nt 4. is the number of nodes in the cross-section (i.e. for constant z ). (nf + 1) is

the number of interpolation functions in the z direction. p;, is the pressure phasor
value at node j for the interpolation function Z; (z). Z, (z) must satisfy the boundary
conditions at the limit cross-sections Z = 7y and Z = Z;. Note that, in the FSM,
(nf + 1) sets of nf .. nodal values each are required. Due to the Kronecker delta
property of the interpolation functions used, in the FEM p; is directly the nodal
pressure value. A different situation is found in the FSM, where in order to obtain
the j nodal value of pressure at each cross-section of constant z a combination of

the values p; s is needed:
ny
pi=Y_ Z:(2)pjs (12)
s=0
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rN.XY

Figure 1: Sketch and notation used in the FSM formulation of an acoustic domain that
can be generated by extrusion along the z direction. On the left, the two-dimensional
computational domain. On the right the three-dimensional physical domain. The
colored and patterned regions represent several boundary conditions for the fluid
domain: I'g (red), the absorbing contour modelled with a Robin boundary condition;
'y (green), the contour where a normal velocity is imposed; I'pg (blue), the region
that is in contact with a vibrating solid. Z;' and Z} denote the beginning and ending
of each region along the extrusion direction.

The test functions ¢ are chosen of the same type as the interpolation functions of
Eq. (11):

F F
ngz

nnodes
p(r) = Ni(2,9) 2. (2)pir 5 wir€C ;3 N:R*—=R (13)

r=0 =1

Eq. (10) must be satisfied for any set of values ;.

With the proposed interpolation and test functions the operations in the weak
form of Eq. (10) can be split into the ones in the XY cross-section and the ones in the
z direction. The z direction will be treated analytically in order to reduce the problem
to a two-dimensional FEM calculation in the XY cross-section. Thus, (nf + 1) sets
of nf’ ... linear equations are obtained.

As an example, consider the first term of the weak form of Eq. (10) for the test
function ¢ = N; (z,y) 2, (z). The three-dimensional Laplacian contribution to the

1, 7 matrix coefficient corresponding to the strip functions s and r can be written as

Zr,

l / vp.wdsz] _ / (Vay Ni - Vey ;) ddy / 2, (2) 2. (=) dot
Qfp Qr xy

i.5ir,s Zo

Zy,
+/ Nide:cdy/ Z(2) 2 (2)dz i, j=1,2,....nf . T,5=0,1,2,... 0%
Qr xy Zo
(14)



where Z/ (z) = dZ, (z) /dz, Vxy is the gradient in the XY plane, Qp xy is the two-
dimensional cross-section in the XY plane. Z; and Z;, are the limits of integration
for the acoustic domain Qp as shown in Fig. 1. A similar substitution can be done
for the other terms of Eq. (10) in order to obtain

F F
Ago o Agur Po £y
: . : - : (15)
F F F
Anlg,O Ang,ng png fn§

with

Afjs = [Kf(yll (r,s) + AME I (r, s)} +iwChy Ik (r,s) — w*M%E I (r,s)  (16)

and where
I (r,s) = ZOZLZT (2) 2, (2) dz (17)
I (r.s) = ZOZLz; (2) 2 (=) d (18)
i) = [ z () 2.(2) dz (19)

and M%,,, CLy, K%, are the two-dimensional mass, absorption and stiffness matrices

defined as

(Kxy),; = / VN; - VN;dQp xy (20)
QF xvy
! Ir.xy
1
(Miy) = —2/ NiN;dQp xy (22)
7 ¢ Qp xvy 7

The expression of the acoustic force vector is

Nps 7,
(ff) = 1prpWw Z / Qmé(xm,ym)NidQF,XY / Z, (Z) 5Zmdz
m=1" QF.xY Zo

Z, (2)vn(2);dz  (23)

Ny ZJLV
: v
— E / 1ppwN; N dI‘x,y/
j=1 7 Tn.xv zy

where the imposed velocity on the I'y boundary is
Un<.§l,”y72) = ZN;(SL’,y)’Un(Z)J (24)
j=1

and N} are interpolation functions restricted to the boundary. n, is the number of
nodes with imposed velocity.



Eq. (15) shows the block structure of the system of linear equations to be solved.
Each block is related with the strip functions r and s, while the indices ¢ and j inside
the block are related with the discretisation in the XY plane. The off-diagonal blocks
are zero if the strip functions are orthogonal. This is an important aspect of the
method. It will be more efficient from the computational point of view to solve nk +1
smaller linear systems of equations than a large linear system including all the blocks.

2.3 Acoustic strip functions

The interpolation functions Z, (z) in the z direction highly influence the FSM perfor-
mance and the precision of the obtained solutions. Two issues have to be considered.
On the one hand, Z, (z) must satisfy the boundary conditions at z = Zy and z = 7.
On the other hand, the group of functions must be complete enough to reproduce the
solution variation along the z axis.

An interesting, but not necessary, property to be satisfied is orthogonality. If the
integrals shown in Eqgs. (17), (18) and (19) vanish for r» # s the blocks in Eq. (15)
become uncoupled.

Several strip functions depending on the boundary conditions are proposed in
[1] for the case of structural analysis. Here their equivalent for acoustics and the
Helmholtz equation are shown.

The simplest option is to find solutions of

2! (2) + k120 (2) = 0 (25)
when the contours at z = Z; and z = Z are purely reflecting. The boundary
conditions to satisfy are then

0
](;(:E) =0 on z= Zyand z = 7y, (26)
n

and the set of one-dimensional interpolation functions that satisfies Eq. (26) in the
z direction

Z, (2) = cos <%) r=0,1,2,... (27)

with k. = rw/(Z — Zp). The cosine functions have the following orthogonality prop-
erties:

7 0 ifr#s
I (r,s) = Z,.(2) 2, (2)dz=<X Z — Zy ifr=s=0 (28)
Zo (ZL_ZO)/2 ifT:S>O
zr 0 if r#s
I (r,s) = Z(2) 2 (2)dz=1¢ 0 , %f'f’:SIO (29)
Zo 2y Hr=s>0

Orthogonality according to the scalar product of Eq. (19) is, in general, not satisfied.
Thus, problems with acoustic absorption only in a zone along the extrusion direction
have a fully coupled system in Eq. (15).



The boundary conditions (26) are the more ‘friendly’ for the Helmholtz equation.
Like most of the boundary conditions imposed to a structure (blocked displacements
or rotations), they do not depend on the frequency and known expressions of scalar
products I (r, s) and I, (r, s) are available. They are often found in realistic building
acoustic models. However, different boundary conditions can also be of interest. This
is the case of an acoustic domain with absorbing surfaces at z = Z; and z = 7,
modelled by means of Robin boundary conditions

3];5;1:) = —iprwAop(z) onz=12, ; Ip(z) — ipswAp(z) o= Z;

on
(30)
where Ay and A; are the admittances in the surfaces at 2 = Z; and z = Zr. The
generic solution for the one-dimensional problem composed of Eq. (25) and the one-
dimensional version of the boundary conditions (30) (projected on the z direction) is
of the form

Z, (2) = Ce*r® 4 Chehr? k., Ci,Cy € C (31)

leading to the following system of equations with unknowns C; and Cb:

kr - pFWAO _kr - pFWAO . Cl _ 0 (32)
(ky + prwAr) et (—k, + ppwAyp) e it Cy 0

This system has non-null solutions only if the determinant of the 2 x 2 matrix is
equal to zero. For a constant frequency w this leads to a root finding problem in the
complex plane where the unknown is k.. Due to the presence of sines and cosines
an infinite set of solutions k, can be found. This makes it possible to generate an
infinite series of wave functions Z, (z) in order to interpolate along the z direction. If
the undamped values of the wave number r7/(Z; — Z) are used as initial guess, the
convergence is reached very fast with Newton’s root finding method. Some numerical
values are provided in Table 1 for the case (Z;, — Zy) = 3.5 m. It can be seen that a
damped wave number has a small imaginary part that causes the attenuation.

Table 1: Numerical values of the wave number k, for different values of acoustic
absorption a.

r 1 2 3
rn/(ZL — Zy),a = 0% 0.897597 1.795194 2.692791
ky, o = 6% 0.905350 + 0.083184i  1.796184 + 0.0420461  2.693086 + 0.028028i
ky,a = T70% 0.759194 + 0.292140i  1.990465 + 0.481909i  2.750129 + 0.351009i

Two drawbacks should be noted. On the one hand, if the boundary conditions
depend on the problem frequency w (which is the case of Eq. (30) and acoustic prob-
lems in general), the set of functions to interpolate in the symmetry direction must
be generated for each frequency. On the other hand the set of functions do not sat-
isfy at the same time orthogonality according to the scalar products in Egs. (17) and
(18). Even if they were orthogonalised with respect to one of the two scalar products
by means of a Gram-Schmidt procedure, the resulting set of functions would still be



non-orthogonal with respect to the other. This can be seen if Eq. (25) is multiplied by
Z, (z) and integrated by parts. The following weak form of the equation is obtained:

_/ZL Z!(2) Zl(2) dz+k, /ZL Z.(2)Z,(2)dz+Z(Z1) Z,(Z1)— 2! (Zo) Zs (Zy) = 0

Zo Zo
(33)

This has to be satisfied for any pair of functions Z, (z) and Z; (z). The scalar products
(17) and (18) appear now in Eq. (33). It can be seen that a set of strip functions
Z, (z) will be orthogonal with respect to both scalar products at the same time if and
only if Z/(Z1) 2, (Z1) — 2] (Zy) Z5 (Zy) = 0. This only happens for some case such
as the homogeneous boundary conditions of Eq. (25).

When this double orthogonality cannot be obtained, the system of equations de-
rived from Eq. (15) is coupled (between blocks r and s). Some of the off-diagonal
blocks are non-null.

2.4 The vibroacoustic problem: coupling between the FSM
acoustic and solid domains

When the acoustic domain is coupled with a vibrating structure, see Egs. (4) and
(9), an integral in the left-hand-side of the weak formulation of the acoustic problem
Eq. (10) must be added. The acoustic force due to the solid vibration is then expressed
as

prs _ /F peeo(u(z) - n)dl (34)

where n is here the outward unit normal with respect to the acoustic domain.
If the FSM is used also for the structure, the displacement field is interpolated as

NG Nodes NG N3odes
u(z) = Zl D NG(X) - Ujy(z) = Zl Y Nj(@) - (T w24 (2)) (35)
q=1 j=1 q=1 j=1

where n7 is the number of strip functions used for the structure, n2 , _ is the number of
solid nodes in the cross-section, N;(X)/N;(z) are the shape functions in global/local
coordinates. T is a transfer matrix of an Euler beam element but with an additional
degree of freedom. T7 transforms from local (z,y) to global (X,Y) coordinates in
the XY plane (keeping variables unmodified in the z direction).

Note that, for the acoustic functions Z, (z), the subscript r starts at 0. They are
often cosines, see Eq. (27), and the constant function is necessary. On the contrary, the
subscript ¢ of the structural functions Z, (z) starts at 1. In the out-of-plane displace-
ments, they are often sines. Considering ¢ = 0 for sines would lead to a null function.
The solid strip functions depend on the local coordinates of the structural element
because, in general, each local displacement component uses different interpolation
along the extrusion direction.

The degrees of freedom considered in each structural node if finite strip shell
elements are considered are

U, = [uX,uy,uZ,HZ]T =T7. u; = ([ug, uy, us, 0] T)T (36)
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with uy = w, and 0z = 6,. The local directions in the two nodes shell strip are:
x, direction defined by the element nodes, contained in the shell plane; y, direction
orthogonal to the shell; z = = A y (being A the cross product), coincident with the
extrusion direction (see Fig. 2). Z,(z) is a diagonal matrix with the interpolation
functions in the z direction used for the structural displacements in local coordinates

Zi(z) 0 0 0
B 0 Z"(2) 0 0
Zq (Z) - 0 0 Z(;Lz (Z) 0 (37)
0 0 0 Z%(2)

For the case of structural strips satisfying the boundary conditions (in local coordi-
nates) u, =0, u, = 0, 6, = 0, as described in [1],

" " ) Tq (2 — ZFS
Zqz (Z) —= qu (Z) —= Zgz (Z) = S1n (ﬁ) (38)
L 0
" mq (2 — Z;°)
2, (2) = cos (W (39)

The acoustic nodal forces (component i in the contribution associated with the fluid
function Z, (2)) caused by the vibroacoustic coupling (the part related with Z, (z))
can now be written as

Mhodes

(W), =t

s
Jj=1

(/p —Ni(X)n - (N;(X)U;(2)) dF) _

n§o<les ZLFS
e Y ( / —N@-<z><n~Nj<x>~TT>dr> N I ACYE
1 I'rs xvy

i 7°
(L;g)ij
Z.Zl,...,nfodes 7“:0,1,---,715 q:]-aza"'vng (40)

where (L¥%),; is the sub-matrix that links the acoustic force in node i with the struc-
tural displacements of the solid node j. This matrix is calculated in the XY two-
dimensional space.

In practice only the normal direction to the boundary is important for fluid-
structure coupling because the tangential interaction forces can be neglected for per-

fect fluids. Thus only the local y component contributes to the coupling force and if
Z0(2) = Zgz (2):

£Fr% — — prow? [ Z.(2) 2} (2) dz] LS . yglebal (41)

q q
S
ZO

A similar consideration can be done for the forces caused by the fluid over the structure
and it can be written that

zbs
foalr — / Z,(2) 2l (z)dz L. p, (42)

FS
ZO
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L5 takes into account the effect of the acoustic fluid over the structure and LS =
(LSF)T. It must be noted that L™ has to be only computed once and then reused to
generate all the fluid-structure coupling matrices between the r contribution of fluid
F' and the ¢ contribution of solid §

zks
LS — S / Z,(2) 20 (2) dz = LFSI7S (r,q) = LSS (q,r)  (43)

FS
ZO

Details on how L¥ is calculated can be found below in Section 2.5.
The system of equations to be solved for the case of a fluid (F) and a solid (5)
domain is

S1F 7]
S S S1Ft n
AS, . A5, L R
’ "z u; 1
S s Fy S sF g : )
Ais 1 Ais ns _L "z P _L "z "z uns frfs
- g Z = £
w2pp LSt W2ppll Tz Af, ... Agng Po £y
: : : F
F pS1 F rS s PrE £
2 n 2 n n F F zZ ) n )
L wippL "2 wippl "z 2 An§,0 Anlzw,”g ) -
(44)
with
S _ S : S 2N AS
A/ =K, +iwC], —w' M/, (45)

and Afj , the matrix defined in Eq. (16). Mit, Kit and C;;t are the mass, stiffness
and damping FSM matrices for the solid part of the problem. f(f is the solid force
vector. Details of their formulation for several structural finite strips can be found in
[1]. The formulation of these solid matrices is more complex than for the fluid and the
contribution of the z direction cannot be separated. If it is a simply supported strip,
the solid part matrix A® in the system of equations (44) is block diagonal. However
the global system is, in general, not block diagonal due to the coupling between the
fluid and solid. For the case of multiple solids with multiple fluids, the block structure

in Eq. (44) must be repeated.

2.5 Details on the implementation of the coupling procedures

Different options can be considered in order to implement fluid-structure coupling in
finite element softwares. They can be classified into two main groups, depending on
the use of congruent or non-congruent meshes.

When congruent meshes are used, there is a univocal relationship between the fluid
and solid elements in the fluid-structure interface. Each solid element is in contact
with only one fluid element that has the same size. This is an advantage from the
implementation point of view. Sometimes the concept of ‘coupling element’ is used.
This can be understood as a layer between the solid and fluid elements with the same
connectivity and that is used to calculate the coupling matrices. Two main drawbacks
of this congruent mesh option can be mentioned:
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e The element size of the fluid and solid meshes has to be the same. This is not
optimal because the wave length in both domains is often different. If the fluid
and solid meshes are not adapted to the expected wave length, the computational
costs of the problem are larger.

e To have an univocal relationship between the fluid and solid elements is a con-
straint in the mesh building process. The solid and fluid domains are in practise
meshed with a single mesh. It would be easier to mesh each solid and fluid
domain independently from the others.

Code-Aster [18] accepts mainly congruent meshes without doubled nodes in its basic
operations. In fact, the model properties and formulation have to be assigned to the
elements of the mesh and the software decides the variable types of each node (dis-
placements for solid massive elements, displacements and rotations for shell elements,
pressure/velocity potential for acoustic elements and all of them in nodes defined in
an interface zone). The concept of ‘coupling element’ is used in [19].

In order to avoid the two drawbacks mentioned above, a non-congruent mesh op-
tion can be considered. The additional efforts are related with the implementation.
On the one hand, some strategy in order to define the contact zones and identify
the elements from the fluid and solid sides must be established. On the other hand,
functions that transmit the information between the fluid and the solid are required.
This routines can cause the calculation of the coupling matrix to be slower than an
implementation for only congruent meshes and with coupling elements in the interface
where a lot of loops of elements are avoided. However, this increase of time is min-
imised if appropriate topological information is stored (i.e. tag the elements in order
to minimise loop lengths or perform mappings). In addition, the cost of calculating a
coupling matrix is often small when compared with the other tasks to be performed
by the software and it is preferable to minimise the memory storage requirements.
It is then important to avoid constraints when constructing the meshes of the prob-
lem. ACTRAN is an example of code dealing with both congruent and non-congruent
meshes, according to [20].

Our implemetation of the FSM for vibroacoustic problems can deal with non-
congruent meshes. A detail of the coupling zone in the calculation domain can be
seen in Fig. 2. The continuous blue line represents the profile of the shell finite strips.
The dashed light blue line represents the contour of the fluid domain that can be in
contact with the shell finite strip. This contour is part of the fluid elements, in this
case triangles. The integral required for the LS coefficients is calculated from the
fluid side. The procedure described in Table 2 is followed.

To compute the integral from the fluid side has the advantage that situations with
a solid immersed in a fluid can be handled with less difficulties. The typical example
is a shell surrounded by fluids at both sides. It is then very important to check the
orientation of the outward normal vector to the shell (or the local coordinates in the
shell element) with respect to the outward normal vector to the acoustic domain.
When the immersed solid is modelled by means of massive elements it is quite indif-
ferent if the integral is performed following the fluid or solid contact contour and the
checking of normal vector orientation can be avoided if meshes are generated with a
consistent element orientation criterion.
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Figure 2: Sketch of the element interface in the coupling zone. On the right, physical
(three-dimensional) and computational (two-dimensional) domains. A patch of three
shell finite strips is represented. T'wo acoustic finite strip elements are in contact with
this shell finite strips. On the left a detail of the coupling zone in the computational
domain is shown.

Table 2: Procedure followed in order to calculate the fluid-solid interaction matrices
in the two-dimensional calculation domain.

> Loop in elements of the fluid wetting contour
> Loop in Gauss points inside the element
» Obtain the global coordinates of the Gauss point
» Search the element in the wetted structural boundary that contains this point
» Calculate the local coordinates in the wetted structural element
» Check if the solid and fluid normal vectors are oriented in the same or inverse
way (only necessary for shell type elements) and assign appropriate sign to
the coupling terms
»Evaluate —N;(z)(n - N;(z) - TT) and multiply by the integration weight.
end
» Assemble in matrix L
end

Another important aspect to take into account is to use an adaptive quadrature
rule. The number of Gauss points must be increased, for example, if a large number of
structural elements are in contact with a single fluid element. A geometrical tolerance
has been established in order to decide if the Gauss point is in contact or not with
the wetted structural contour.

3 Application examples

Various examples of the use of the FSM in acoustic and vibroacoustic problems will
be shown in this section. A first group of examples deals with the frequency response
of acoustic domains. An example with complex geometry (coupled acoustic cavities)
illustrates the possibilities of the FSM for acoustic problems. In a second group of
examples, the FSM is applied to the vibroacoustic problem. Comparisons of the FSM
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with the FEM have been done. The possibilities of the FSM for vibroacoustic problems
are illustrated with a final example where the vibration transmission between the
leaves of a double wall are predicted. The wall geometry is complex at cross-section
level due to the stud shape. In addition the coupling between the leaves and the air
cavity between them is high. This can be a problem for other modelling techniques
that require weak coupling (which is not the case of the FSM).

3.1 Frequency response of acoustic domains

Two different cases have been considered to illustrate how the FSM can be used for
acoustic problems. In order to obtain the pressure field in the acoustic domain for
a single frequency, Eq. (15) must be solved for a finite number of r and s values
(r,s = 0,1,...,n%). The results are the r'"—contribution to the pressure field, p,.
These must be combined according to Eq. (11). In the first example of Section 3.1.1,
the case of a point sound source in a cuboid shaped room is considered. This is a
well known acoustic problem with an approximate expression of the pressure field.
This expression is based on modal analysis and can be obtained without additional
software. Finally, an example with a more complex extrusion geometry that illustrates
the capabilities of the FSM for realistic problems is presented in Section 3.1.2.

Acoustic absorption is modelled by means of Robin boundaries. The admittances
considered are shown in Table 3.

Table 3: Values of normalised admittance and averaged absorption for the Robin
boundary condition.

1/Aprc 6 20 70
a(%) 51 18 6

3.1.1 Comparison with modal analysis: point source in a cuboid shaped
room

A cuboid shaped room with dimensions L, =2 m, L, = 3 m and L, = 3.5 m and
a point sound source (with a source strength ¢, = 0.015 m3/s) placed at position
X, =03m, Y, =04 m, Z;, = 0.6 m has been considered. Direction z has been
chosen to be the extrusion direction. The output is the sound pressure level of the
room, evaluated as

F
nodes

Lzl()logm( o2 with <p3ms>:nF > 5 (46)

nodes ;—q

n

where (p?.) is the space averaged root mean square pressure. In the FSM it is
calculated by averaging the nodal values p; of 20 equally spaced cross-sections (each
cross-section has a constant z coordinate). n’ , nodal values are used for each cross-
section. The values of acoustic absorption considered are shown in Table 3.
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An approximate solution of the problem can also be obtained by means of analyt-
ical modal analysis (see for example [21, 22]). This analytical formulation provides a
more accurate pressure field for the case without acoustic absorption. The results are
shown in Fig. 3.
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Figure 3: Comparison between the pressure fields obtained by means of the FSM and
the analytical modal analysis: (a) no acoustic absorption; (b) with acoustic absorp-
tion.

Only the lower frequencies have been considered. For higher frequencies the modal
density is too large and the results too diffuse in order to understand the performance
of the numerical method. In any case the FSM can be used in order to decrease the
computational costs for a fixed element size and, for the same problem, be able to
calculate higher frequencies.

The set of functions Z, (z) has been truncated for a value of r > 2 f,,.. L. /c. This
value ensures that even the pressure field which is the most similar to the eigenmode
with a maximum number of waves in the z direction (constant pressure field in the
XY plane) is correctly described. Unfortunately, the impossibility of a priori discard-
ing some functions of the set is a drawback of the FSM when performing a frequency
response analysis. The shape of the expected pressure field is unknown a priori due to
the high modal density and the large number of frequencies of interest (it is common
to perform a large number of calculations in a frequency band). The vector p, with a
more important contribution to the pressure field for a fixed frequency is not known
a priori and the interpolation field must be prepared for all the possible modal shapes
(all the possible values of 7).

An example of numerical error caused by a poor set of interpolation functions in the
extrusion direction can be found in Fig. 3(a). The case where only two interpolation
functions in the z direction are used cannot provide good results around the frequency
129.08 Hz. This is an eigenfrequency with mode (n, = 1,n, = 0,n, = 2), isolated
from other eigenfrequencies of the domain. The pressure field clearly has a wave in
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the z direction and cannot be described by the functions Z; (z) (constant along the
z direction) and Z; (z) (half wave along the z direction, see Eq. (27)). At least 25 (2)
is required.

The agreement between both approaches is better for smaller values of the acoustic
absorption. The FSM interpolation field can satisfy the Robin boundary condition.
This is not the case of pressure fields interpolated with modal functions obtained by
assuming purely reflecting boundaries.

3.1.2 Sound propagation between coupled acoustic domains

The FSM has been used to solve a more complex problem without analytical solution.
Three acoustic domains, coupled as shown in the plan of Fig. 4, have been considered
(they are like coupled rooms [23]). The values L, = 5 m, L, = 3 m, L, = 2.5
m, € = 0.25, § = 0.4 and 6 = 0.05 remain constant along the analysis. A point
sound source at the position Xy = 1.49 m, Y, = 1.48 m, Z, = 1 m with a source
strength ¢, = 0.015 m3/s is considered. The sound source is placed in the sending
room that is connected with the receiving room. The goal of the problem is to
study how the sound level difference between the sending and the receiving rooms
(D = Lsending — Lreceiving) depends on the openings width and the acoustic absorption
of the walls. L is calculated inside each room according to Eq. (46).

BLy 3Ly

- >
Sending Receiving
Xs
sLy  ©) yhe 1Ly
SLV¢ Ys

Figure 4: Building plan with three coupled rooms. A point source is placed in the
sending room.

Note that the extrusion symmetry direction is orthogonal to the plan. Robin
boundary conditions with the admittances shown in Table 3 are imposed at the vertical
surfaces. Interpolation functions defined in Eq. (27) are used, thus the floors and the
ceilings of the rooms are purely reflecting. A width of 0.1 m has been given to all
the vertical partitions. However, this is only used to build the mesh. This is an
acoustic (not vibroacoustic problem) and sound transmission through the partitions
is not considered. Thus, the sound level difference shown as output corresponds to an
acoustic path through the openings.
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For frequencies below 500 Hz, one calculation each Hz and eight functions (nf = 8)
in the 2z direction have been used. For frequencies over 500 Hz, one calculation each
five Hz and nf, = 22 functions in the z direction have been used. In both cases
quadratic triangles have been used in the XY plane with mesh sizes of 0.15 m and
0.055 m respectively.

The dependence of the sound level difference D on the opening width vL, and
the acoustic absorption of the walls is shown in Fig. 5. A third octave band average
has been done. In the low-frequency range, the influence of the opening width is
small. The global behaviour highly depends on the resonances of the problem and
modes increasing the pressure level in both rooms can be found in each frequency
band. On the contrary, the opening width is an important parameter for frequencies
above 100 Hz. The sound level difference is higher for the cases with larger room
connection. The acoustic absorption also plays an important role. It mainly amplifies
the differences between cases with different opening widths.
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Figure 5: Sound level difference between the sending and receiving rooms for several
values of acoustic absorption a and opening width v: (a) a = 6%; (b) a = 18%; (c)
a = 50%.

3.2 Vibroacoustic problems
3.2.1 Comparison with the FEM: pressure excited plate

The FSM solution of vibroacoustic problems has been compared with the FEM solu-
tion provided by Code-Aster. This is available on line [18] and can be used under free
software licenses. As detailed in Section 2.1 the pressure-displacement formulation has
been considered in our implementation of the FSM. In Code-Aster the pressure and
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the displacement potential is considered in order to describe the fluid. This doubles
the number of degrees of freedom in the fluid but leads to a symmetric formulation of
the vibroacoustic problem. More details can be found in [24]. The information on its
acoustic FEM part can be found in [25]. In any case, the pressure and displacement
fields obtained should be the same for both approaches.

The model problem considered to compare the FSM and the FEM results is the
cavity of Section 3.1.1 but with a rectangular plate (L, = 3 m X L, = 3.5 m) with the
displacements blocked along its boundary (see Fig. 6 where the structure boundary
is identified as I'pg).The geometrical and mechanical properties of the wall can be
found in Table 4. The DKT shell element is used in Code-Aster and a rectangular
shell strip with cubic polynomial interpolation for the out-of-plane displacements and
linear interpolation for the in-plane displacements is used in the FSM model. The
excitation is an imposed velocity in the I'y square surface (0.2 m x 0.2 m with
Ly, = Ly, = 0.5 m according to Fig. 6). Thus, we can see how the FSM only
requires extrusion symmetry in the geometry but not in the boundary conditions. An
acoustic absorption of 18% according to Table 3 is considered in the boundary I'p.

Table 4: Material and geometrical properties of the concrete plate.

Meaning Symbol Value

Young’s modulus E 2.94-10'° N/m?
Solid density 0s 2500 kg/m?
Wall thickness t 0.1m

Poisson’s ratio v 0.25

Hysteretic damping coefficient 7 0%

The outputs considered are the pressure phasor at the position (0,0,0) and the
normal displacement (U,, = Ux) to the plate point (2,2.25,3). The reference value is
taken from a FSM calculation with linear finite element size h = 0.03 m both in the
acoustic domain and in the plate with the following interpolation in the z direction:
nt, =10 (acoustic domain) and nj = 5 (structure).

The relative difference between the FEM solution and the reference FSM solution
for the fluid and the solid are calculated as

ep = n Pl (U= (Un)erl
|(Un)ref|

|pref|

In the vibroacoustic problem, the dependence of computational costs on the imple-
mentation and chosen algorithms is larger than for the case of the acoustic problem.
The use of a direct solver for banded matrices is not a reasonable option if realistic
problems have to be solved for low and mid frequencies. The number of operations
required by the direct solvers for sparse matrices depends a lot on the implementation
and the topology of the domains discretisation (including the contacts between the
fluid and the solid). It is, consequently, very problem dependent. Moreover, strate-
gies that can help with the optimisation of the resolution by considering the degree of
coupling between fluid and solid domains can be considered (see, for example, [20]).

(47)
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Figure 6: Sketch of the example used to compare the FSM with the FEM in vi-
broacoustic problems. The three-dimensional background image of the pressure field
corresponds to a frequency of 110 Hz in a problem solved by means of the FSM.

In cases with weak coupling, staggered strategies where the fluid and solid domains
are solved independently and the coupling effect is taken into account a posteriori by
means of iterative corrections can be considered. When this happens, the solution
of the coupled linear system of equations can be avoided. For these reasons the nu-
merical error has been plotted depending on the number of degrees of freedom of the
problem in Fig. 7.
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Figure 7: Comparison between the FSM and the FEM for a vibroacoustic problem
(the frequency is 165 Hz) : (a) displacement; (b) pressure.
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Three different refinement options have been considered: (i) The FEM congruent
mesh is refined (with element lengths in a range between 0.5 m and 0.04 m); (1)
‘FSM h’, the solution is obtained with the FSM. The two-dimensional mesh is refined
(with element lengths in a range between 0.5 m and 0.035 m) while the number of
functions used for the extrusion direction is kept constant (and large enough for the
frequency of interest with n% = 10 and ng, = 5); (iii) ‘FSM n’, the solution is obtained
with the FSM. The two-dimensional mesh has a constant element size (0.06 m) while
the number of functions used for the extrusion direction is progressively increased
(nf =0,1,2,3,4,7,10,20 and n3 = 1,2,3,4,5,8,5, 10 respectively).

It can always be seen how for the same numerical error, the computational costs
for the FSM are significantly smaller than for the FEM. The error of the FSM solution
is always two orders of magnitude smaller than the FEM error for a given number of
degrees of freedom. In the FSM, the solution can be improved by refining the two-
dimensional mesh and increasing the number of functions for the extrusion direction.
To perform only one of the two actions is not enough as shown by the case ‘FSM n’
where, after an over-abundant increase of n%, the numerical error remains constant.

3.2.2 Double wall analysis

A lightweight double wall is an example of vibroacoustic system with extrusion sym-
metry. The cross-section usually has a quite complex geometry that is extruded along
a line. In addition, the coupling between the cavities and the structure is strong.
This invalidates most of the one-way-coupling hypotheses assumed in simplified vi-
broacoustic models and the use of numerical techniques such as the FEM or the FSM
becomes more important.

The example shown here is based on the lightweight double walls studied in [27].
The role of the studs in the vibration transmission between leaves was studied at cross-
section level by means of two-dimensional models. Now, the vibration transmission
between the leaves has been predicted by means of a FSM three-dimensional analysis.
The coupling with the air cavities is now considered (it was omitted in [27] in order
to simplify the problem and focus the analysis in the structural path of vibration
transmission). The coupled problem is significantly expensive and this limits the
frequency range that can be analysed.

A double wall with four C-shaped studs has been considered. The dimensions of
the double wall are 0.07 m (height of the cavity) x 3.0 m x 3.5 m (extrusion direction).
The separation between the studs is 0.6 m. A sketch of the double wall cross-section
and the stud can be found in Fig. 8. The dimensions of the stud according to the
notation in Fig. 8 are: h = 7 mm, b = 4 mm and ¢ = 1 mm with a thickness of
0.47 mm. The studs and the leaves are connected along a line. The geometrical and
mechanical properties of the leaves can be shown in Table 5.

A pressure is applied in a 0.1 m x 0.1 m square at a distance of 1.2 m of the
border of the double wall. The vibration level difference between the leaves of the
double wall is calculated as

< |tupper|? >
D, ;; = 10log,, (W) (48)
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where Uypper and Uiower are the phasors of displacements for the upper and lower leaves.
The spatial average is done along the leave. A larger value of D, ;; means a better
vibration isolation.

Table 5: Geometrical and mechanical properties of the leaves

Meaning Symbol Value
Thickness t 13 mm
Young’s modulus E 2.5-10° N/m?
Density 0s 692.3 kg/m?
Damping n 3%
<——b——>
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Figure 8: Sketch of the double wall, the stud axis follows the extrusion direction: (a)
XY cross-section; (b) C-shaped stud.

Three different situations have been considered:
1. A simple double wall composed of the two leaves and an air cavity between them
2. A structure composed by the two leaves and the C-shaped studs

3. The ‘real’ double wall composed of the two leaves, and four C-shaped studs
linking them. The cavity between leaves is divided into five channels by the
studs

The first model is used to estimate the vibration transmission through the cavity
(cavity path). The vibration in the upper leave is transmitted to the air cavity and
the pressure in the cavity generates vibration in the lower leave. The goal of the
second situation is to show how the vibrations are transmitted through the structure
in absence of acoustic cavities (stud path). Finally, a realistic model of the double
wall including all the transmission paths between leaves is considered in order to show
how are they balanced in the double wall.

The results are shown in Fig. 9. The cavity path is more important for frequencies
below 175 Hz. Above this frequency, the most important part of the vibrations are
transmitted through the structure. The ‘real’ situations represents a lower bound of
both transmission paths (cavity and stud). The isolation of vibrations increases with
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frequency. It is clear that, even for the case of air cavities (not filled with absorbing
materials), the insulation capacity of these lightweight double walls is controlled by
the flexibility of the studs.
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Figure 9: Vibration level difference between the leaves of a double wall for several
wall configurations.

4 Conclusions

A finite strip formulation for acoustic and vibroacoustic problems (pressure-displacement
formulation) has been presented. This technique has been used in order to solve
problems in finite dimension domains with Neumann (purely reflecting) and Robin
(absorbing) boundary conditions in the extrusion direction. A set of trigonometric
functions (strip functions) is considered in the extrusion direction in order to inter-
polate the pressure and displacement fields. This is necessary in order to describe
the modal response of the system and reproduce phenomena such as the resonant
transmission of sound (important in building acoustics). This cannot be modelled if
the wave length along the extrusion direction is imposed a priori.

Some finite strip functions for the acoustic problem have been proposed. Only
in the case of purely reflecting boundary conditions in the extrusion direction the
contribution of each strip function can be obtained independently from the others. In
general, if absorption is considered, a coupled linear system of equations is obtained.
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This represents a disadvantage of the acoustic FSM if compared with the structural
FSM. In the vibroacoustic problem the coupling between the acoustic and solid strip
function contributions cannot, in general be avoided because: (1) different strip func-
tions are used in the acoustic and solid parts of the problem in order to satisfy the
boundary conditions; (i) the dimensions of the solid and the fluid domains along the
extrusion direction can be different.

Various comparisons of the FSM results with the FEM and with analytical modal
analysis have been done. The FEM results has been generated by means of Code-
Aster. The agreement with the FSM is good for both acoustic and vibroacoustic
problems. In the comparison with modal analysis the agreement is also correct. Es-
pecially for cases with low acoustic absorption.

The computational costs of solving a three-dimensional problem with the FSM are
significantly smaller than the FEM costs. This can be used in order to increase the
frequency range modelled with a deterministic model.

The FSM is better than other numerical models that use trigonometric functions
to reduce the computational costs (such as the acoustic modal analysis) in order to
reproduce the boundary conditions of the problem. The use of polynomial interpo-
lation at cross-section level implies that the normal derivative of the pressure field
at the contour can be non-null. This is important in order to satisfy the absorbing
boundary conditions (very relevant and used in building acoustics) and the coupling
with the structure.

The FSM represents an useful tool to deal with building acoustic problems with an
extrusion symmetry geometry that is complex enough at cross-section level to make
very difficult the formulation of analytical models (like for example Section 3.2.2).
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