Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.772 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • ANiComp - Anàlisi numèrica i computació científica
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • ANiComp - Anàlisi numèrica i computació científica
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Concurrent finite element simulation of quadrupolar and dipolar flow noise in low Mach number aeroacoustics

Thumbnail
View/Open
AeroDiffCF-final.pdf (1,043Mb)
Share:
 
 
10.1016/j.compfluid.2016.04.030
 
  View Usage Statistics
Cita com:
hdl:2117/99965

Show full item record
Guasch Fortuny, Oriol
Pont Ribas, Arnau
Baiges Aznar, JoanMés informacióMés informacióMés informació
Codina, RamonMés informacióMés informacióMés informació
Document typeArticle
Defense date2016-07
PublisherElsevier
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
The computation of flow-induced noise at low Mach numbers usually relies on a two-step hybrid methodolgy. In the first step, an incompressible fluid dynamics simulation (CFD) is performed and an acoustic source term is derived from it. The latter becomes the inhomogeneous term for an acoustic wave equation, which is solved in the second step, often resorting to boundary integral formulations. In the presence of rigid bodies, Curie's acoustic analogy is probably the most extended approach. It has been shown that Curie's boundary dipolar noise contribution does in fact correspond to the diffraction of the quadrupolar aerodynamic noise generated by the flow past the rigid body. In this work, advantage is taken from this fact to propose an alternative computational methodology to get the individual quadrupolar and dipolar contributions to the total acoustic pressure. For any linear acoustic wave operator, the unknown acoustic pressure can be split into its incident and diffracted components and be computed simultaneously to the incompressible flow field, in a single finite element computational run. This circumvents the problem found in Curie's analogy of needing the total pressure at the body's boundary, which includes the acoustic pressure fluctuations. The latter cannot be obtained from an incompressible CFD simulation. The proposed unified strategy could be beneficial for a large variety problems such as those involving noise generated from duct terminations, or those related with the simulation of fricatives in numerical voice production, among many others.
CitationGuasch, O., Pont-Ribas, A., Baiges, J., Codina, R. Concurrent finite element simulation of quadrupolar and dipolar flow noise in low Mach number aeroacoustics. "Computers and fluids", Juliol 2016, vol. 133, p. 129-139. 
URIhttp://hdl.handle.net/2117/99965
DOI10.1016/j.compfluid.2016.04.030
ISSN0045-7930
Publisher versionhttp://www.sciencedirect.com/science/article/pii/S0045793016301402
Collections
  • ANiComp - Anàlisi numèrica i computació científica - Articles de revista [101]
  • Departament d'Enginyeria Civil i Ambiental - Articles de revista [2.682]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
AeroDiffCF-final.pdf1,043MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina