Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
13.394 Articles in journals published by the UPC
You are here:
View Item 
  •   DSpace Home
  • Revistes
  • Instrumentation viewpoint
  • 2016, núm. 19
  • View Item
  •   DSpace Home
  • Revistes
  • Instrumentation viewpoint
  • 2016, núm. 19
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automatic fish counting from underwater video images: performance estimation and evaluation

Thumbnail
View/Open
Abstract (2,530Mb)
Share:
 
  View Usage Statistics
Cita com:
hdl:2117/99939

Show full item record
Marini, S.
Azzurro, E.
Coco, S.
Río Fernandez, Joaquín delMés informacióMés informacióMés informació
Enguídanos, S.
Fanelli, E.
Nogueras Cervera, MarcMés informacióMés informacióMés informació
Sbragaglia, Valerio
Toma, DanielMés informacióMés informacióMés informació
Aguzzi, Jacopo
Document typeConference lecture
Defense date2016
PublisherSARTI
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Cabled observatories offer new opportunities to monitor species abundances at frequencies and durations never attained before. When nodes bear cameras, these may be transformed into the first sensor capable of quantifying biological activities at individual, populational, species, and community levels, if automation image processing can be sufficiently implemented. Here, we developed a binary classifier for the fish automated recognition based on Genetic Programming tested on the images provided by OBSEA EMSO testing site platform located at 20 m of depth off Vilanova i la Gertrú (Spain). The performance evaluation of the automatic classifier resulted in a 78% of accuracy compared with the manual counting. Considering the huge dimension of data provided by cabled observatories and the difficulty of manual processing, we consider this result highly promising also in view of future implementation of the methodology to increase the accuracy.
CitationMarini, S. [et al.]. Automatic fish counting from underwater video images: performance estimation and evaluation. A: 7th International Workshop on Marine Technology : MARTECH 2016. "Instrumentation viewpoint". Vilanova i la Geltrú: SARTI, 2016, p. 55-57. 
URIhttp://hdl.handle.net/2117/99939
DLB-32814-2006
ISSN1886-4864
Collections
  • Instrumentation viewpoint - 2016, núm. 19 [48]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
ID23.pdfAbstract2,530MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Cookies policy
  • Inici de la pàgina