Show simple item record

dc.contributor.authorAcho Zuppa, Leonardo
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.date.accessioned2017-01-18T11:58:41Z
dc.date.available2017-01-18T11:58:41Z
dc.date.issued2016-10-01
dc.identifier.citationAcho, L. A chaotic secure communication system design based on iterative learning control theory. "Applied sciences", 1 Octubre 2016, vol. 6, núm. 10.
dc.identifier.issn2076-3417
dc.identifier.urihttp://hdl.handle.net/2117/99579
dc.description.abstractThis paper presents an application of Iterative Learning Control (ILC) theory to secure communication system design by using chaotic signals, where the logistic-map is employed as a source of chaos. Meanwhile, the ILC scheme is employed as a tool to encrypt and decrypt a message. A set of numerical experiments is realized to evidence the performance of our system, including the noisy case on the channels of communication of the proposed scheme.
dc.language.isoeng
dc.publisherMultidisciplinary Digital Publishing Institute
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Informàtica::Automàtica i control
dc.subject.lcshControl theory
dc.subject.otherchaos secure communication
dc.subject.otheriterative learning control
dc.subject.otherlogistic-map
dc.titleA chaotic secure communication system design based on iterative learning control theory
dc.typeArticle
dc.subject.lemacControl automàtic
dc.contributor.groupUniversitat Politècnica de Catalunya. CoDAlab - Control, Modelització, Identificació i Aplicacions
dc.identifier.doi10.3390/app6100311
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://www.mdpi.com/2076-3417/6/10/311
dc.rights.accessOpen Access
local.identifier.drac19192335
dc.description.versionPostprint (published version)
local.citation.authorAcho, L.
local.citation.publicationNameApplied sciences
local.citation.volume6
local.citation.number10


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record