Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

57.064 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • KEMLG - Grup d'Enginyeria del Coneixement i Aprenentatge Automàtic
  • Capítols de llibre
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • KEMLG - Grup d'Enginyeria del Coneixement i Aprenentatge Automàtic
  • Capítols de llibre
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Identifying nutritional patterns through integrative multiview clustering

Thumbnail
View/Open
Artículo Principal (657,1Kb) (Restricted access)   Request copy 

Què és aquest botó?

Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:

  • Disposem del correu electrònic de l'autor
  • El document té una mida inferior a 20 Mb
  • Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Share:
 
 
10.3233/978-1-61499-578-4-185
 
  View Usage Statistics
Cita com:
hdl:2117/99193

Show full item record
Sevilla-Villanueva, BeatrizMés informació
Gibert, KarinaMés informacióMés informacióMés informació
Sànchez-Marrè, MiquelMés informacióMés informacióMés informació
Document typePart of book or chapter of book
Defense date2015
PublisherIOSPress
Rights accessRestricted access - publisher's policy
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
The main goal of this work is to develop a methodology for finding nutritional patterns based on a variety of subject characteristics which can contribute to better understand the interactions between nutrition and health, provided that the complexity of the phenomenon gives poor performance using classical approaches. An innovative methodology based on advanced clustering techniques is proposed in order to find more compact patterns or clusters. The Integrative Multiview Clustering (IMC) combines Multiview Clustering approach with crossing operations over the several partitions obtained. Comparison with other classical clustering techniques is provided to assess the performance of our approach. The Dunn-like cluster validity index proposed by Bezdek & Pal is used for the comparison from a structural point of view, as it is more robust than the original Dunn index. The performance of the IMC method is better than other popular clustering techniques based on the Dunn-like Index. Our findings suggest that the Integrative Multiview Clustering provides more compact and separated clusters. In addition, IMC helps to reduce the high dimensionality of the data based on multiview division of attributes and also, the resulting partition is easier to interpret. Using the Integrative Multiview Clustering approach, a good partition is obtained from a structural point of view. Also, the interpretation of the resulting partition is clearer than the one obtained by classical approache
CitationSevilla-Villanueva, Beatriz, Gibert, Karina, Sanchez, M. Identifying nutritional patterns through integrative multiview clustering. A: "Frontiers in artificial intelligence and applications: artificial intelligence research and development". Amsterdam: IOSPress, 2015, p. 185-194. 
URIhttp://hdl.handle.net/2117/99193
DOI10.3233/978-1-61499-578-4-185
ISBN978-1-61499-577-7
Publisher versionhttp://ebooks.iospress.nl/volumearticle/40933
Collections
  • KEMLG - Grup d'Enginyeria del Coneixement i Aprenentatge Automàtic - Capítols de llibre [15]
  • Departament d'Estadística i Investigació Operativa - Capítols de llibre [36]
  • Departament de Ciències de la Computació - Capítols de llibre [82]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
ccia201521.pdfBlockedArtículo Principal657,1KbPDFRestricted access

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Inici de la pàgina