A discrete-time approach to the steady-state and stability analysis of distributed nonlinear autonomous circuits

View/Open
Document typeArticle
Defense date2000-02
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
We present a direct method for the steady-state and stability
analysis of autonomous circuits with transmission lines and generic non-
linear elements. With the discretization of the equations that describe the
circuit in the time domain, we obtain a nonlinear algebraic formulation
where the unknowns to determine are the samples of the variables directly
in the steady state, along with the oscillation period, the main unknown in
autonomous circuits.An efficient scheme to buildtheJacobian matrix with
exact partial derivatives with respect to the oscillation period and with re-
spect to the samples of the unknowns is described. Without any modifica-
tion in the analysis method, the stability of the solution can be computed a
posteriori constructing an implicit map, where the last sample is viewed as
a function of the previous samples. The application of this technique to the
time-delayed Chua's circuit (TDCC) allows us to investigate the stability of
the periodic solutions and to locate the period-doubling bifurcations.
CitationBonet-Dalmau, J., Palà-Schönwälder, P. A discrete-time approach to the steady-state and stability analysis of distributed nonlinear autonomous circuits. "IEEE transactions on circuits and systems I: regular papers", Febrer 2000, vol. 47, núm. 2, p. 231-236.
ISSN1057-7122
Files | Description | Size | Format | View |
---|---|---|---|---|
00828576.pdf | 214,0Kb | View/Open |