Show simple item record

dc.contributor.authorGuillemin, Victor
dc.contributor.authorMiranda Galcerán, Eva
dc.contributor.authorPires, Ana Rita
dc.description.abstractIn this short note we give a complete characterization of a certain class of compact corank one Poisson manifolds, those equipped with a closed one-form defining the symplectic foliation and a closed two-form extending the symplectic form on each leaf. If such a manifold has a compact leaf, then all the leaves are compact, and furthermore the manifold is a mapping torus of a compact leaf. These manifolds and their regular Poisson structures admit an extension as the critical hypersurface of a b-Poisson manifold as we will see in [GMP].
dc.format.extent13 p.
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Geometria::Geometria diferencial
dc.subject.lcshFoliations (Mathematics)
dc.titleCodimension one symplectic foliations and regular Poisson manifolds
dc.typeExternal research report
dc.subject.lemacFoliacions (Matemàtica)
dc.subject.lemacTopologia diferencial
dc.rights.accessOpen Access

Files in this item


This item appears in the following Collection(s)

    Show simple item record

    Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 3.0 Spain