Shallow and deep convolutional networks for saliency prediction
View/Open
Pan_Shallow_and_Deep_CVPR_2016_paper.pdf (466,1Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/98248
Document typeConference lecture
Defense date2016
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Rights accessRestricted access - publisher's policy
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
The prediction of salient areas in images has been traditionally addressed with hand-crafted features based on neuroscience principles. This paper, however, addresses the problem with a completely data-driven approach by training a convolutional neural network (convnet). The learning process is formulated as a minimization of a loss function that measures the Euclidean distance of the predicted saliency map with the provided ground truth. The recent publication of large datasets of saliency prediction has provided enough data to train end-to-end architectures that are both fast and accurate. Two designs are proposed: a shallow convnet trained from scratch, and a another deeper solution whose first three layers are adapted from another network trained for classification. To the authors knowledge, these are the first end-to-end CNNs trained and tested for the purpose of saliency prediction.
CitationPan, J., Sayrol, E., Giro, X., McGuinness, K., O'Connor, N. Shallow and deep convolutional networks for saliency prediction. A: IEEE Conference on Computer Vision and Pattern Recognition. "29th IEEE Conference on Computer Vision and Pattern Recognition: 26 June-1 July 2016: Las Vegas, Nevada". Las Vegas, Nevada: Institute of Electrical and Electronics Engineers (IEEE), 2016, p. 598-606.
ISBN978-1-4673-8852-8
Publisher versionhttp://ieeexplore.ieee.org/document/7780440/
Files | Description | Size | Format | View |
---|---|---|---|---|
Pan_Shallow_and_Deep_CVPR_2016_paper.pdf![]() | 466,1Kb | Restricted access |