Show simple item record

dc.contributor.authorChiumenti, Michele
dc.contributor.authorCervera Ruiz, Miguel
dc.contributor.authorDialami, Narges
dc.contributor.authorWu, Bin
dc.contributor.authorJinwei, L.
dc.contributor.authorAgelet de Saracibar Bosch, Carlos
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.date.accessioned2016-11-29T14:31:07Z
dc.date.available2018-12-01T01:31:19Z
dc.date.issued2016-11
dc.identifier.citationChiumenti, M., Cervera, M., Dialami , N., Wu, B., Jinwei, L., Agelet De Saracibar, C. Numerical modeling of the electron beam welding and its experimental validation. "Finite elements in analysis and design", Novembre 2016, vol. 121, p. 118-133.
dc.identifier.issn0168-874X
dc.identifier.urihttp://hdl.handle.net/2117/97438
dc.description.abstractElectron Beam Welding (EBW) is a highly efficient and precise welding method increasingly used within the manufacturing chain and of growing importance in different industrial environments such as the aeronautical and aerospace sectors. This is because, compared to other welding processes, EBW induces lower distortions and residual stresses due to the lower and more focused heat input along the welding line. This work describes the formulation adopted for the numerical simulation of the EBW process as well as the experimental work carried out to calibrate and validate it. The numerical simulation of EBW involves the interaction of thermal, mechanical and metallurgical phenomena. For this reason, in this work the numerical framework couples the heat transfer process to the stress analysis to maximize accuracy. An in-house multi-physics FE software is used to deal with the numerical simulation. The definition of an ad hoc moving heat source is proposed to simulate the EB power surface distribution and the corresponding absorption within the work-piece thickness. Both heat conduction and heat radiation models are considered to dissipate the heat through the boundaries of the component. The material behavior is characterized by an apropos thermo-elasto-viscoplastic constitutive model. Titanium-alloy Ti6A14V is the target material of this work. From the experimental side, the EB welding machine, the vacuum chamber characteristics and the corresponding operative setting are detailed. Finally, the available facilities to record the temperature evolution at different thermo-couple locations as well as to measure both distortions and residual stresses are described. Numerical results are compared with the experimental evidence.
dc.format.extent16 p.
dc.language.isoeng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria civil::Materials i estructures::Materials i estructures metàl·liques
dc.subject.lcshElectron beam welding
dc.subject.otherElectron Beam Welding (EBW)
dc.subject.otherThermo-mechanical
dc.subject.otherPhase-change
dc.subject.otherPlasticity
dc.titleNumerical modeling of the electron beam welding and its experimental validation
dc.typeArticle
dc.subject.lemacSoldadura
dc.contributor.groupUniversitat Politècnica de Catalunya. RMEE - Grup de Resistència de Materials i Estructures en l'Enginyeria
dc.identifier.doi10.1016/j.finel.2016.07.003
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://www.sciencedirect.com/science/article/pii/S0168874X16301378
dc.rights.accessOpen Access
local.identifier.drac19288694
dc.description.versionPostprint (author's final draft)
local.citation.authorChiumenti, M.; Cervera, M.; Dialami, N.; Wu, B.; Jinwei, L.; Agelet De Saracibar, C.
local.citation.publicationNameFinite elements in analysis and design
local.citation.volume121
local.citation.startingPage118
local.citation.endingPage133


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain