Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.781 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • DCCG - Grup de recerca en geometria computacional, combinatoria i discreta
  • Reports de recerca
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • DCCG - Grup de recerca en geometria computacional, combinatoria i discreta
  • Reports de recerca
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Plogi and ACi-1 operators on the polynomial time hierarchy

Thumbnail
View/Open
1400190181.pdf (861,3Kb)
Share:
 
  View Usage Statistics
Cita com:
hdl:2117/97278

Show full item record
Castro Rabal, JorgeMés informacióMés informacióMés informació
Seara Ojea, CarlosMés informacióMés informacióMés informació
Document typeResearch report
Defense date1993-11
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
In a previous paper ([CS-92]) we studied the agreement of operators P_{log^i} and AC^{i-1} acting on NP. In this article we extend this work to other classes of the polynomial time hierarchy. We show that on Sigma_k^p, Pi_k^p, Delta_k^P and Theta_k^P-classes both operators have the same behaviour, but this coincidence does not seem to be true on other classes included in the PH hierarchy: we give a set A such that, relativized to A, P_{log^i}(P_{log^j}(NP)) is different from AC^{i-1}(P_{log^j}(NP)). As a result of these characterizations we show P_{log}(Theta_k^p) = Theta_k^p, an equality that is useful to show lowness properties. In fact, we get easily the Theta-lowness results given by Long and Sheu in their paper [LS-91]. Besides, we clarify the situation of the classes in L_2^{p,Delta} for which their membership to L_2^{p,Theta} was not clear.
CitationCastro, J., Seara, C. "The Plogi and ACi-1 operators on the polynomial time hierarchy". 1993. 
Is part ofLSI-93-44-R
URIhttp://hdl.handle.net/2117/97278
Collections
  • DCCG - Grup de recerca en geometria computacional, combinatoria i discreta - Reports de recerca [14]
  • Departament de Matemàtiques - Reports de recerca [394]
  • LARCA - Laboratori d'Algorísmia Relacional, Complexitat i Aprenentatge - Reports de recerca [68]
  • Departament de Ciències de la Computació - Reports de recerca [1.106]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
1400190181.pdf861,3KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina