Eigendecomposition versus singular value decomposition in adaptive array signal processing
View/Open
Eigendecomposition_versus_singular_value.pdf (932,6Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/97154
Document typeArticle
Defense date1991-10
Rights accessRestricted access - publisher's policy
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Two important questions in array signal processing are addressed in this paper: the data matrix versus autocorrelation matrix alternative and the recursive implementation of subspace DOA methods. The discussion of the first question is done in face of the proposed class of recursive algorithms. These new algorithms are easily implementable and have a high degree of parallelism that is suitable for on-line implementations. Algorithms for recursive implementation of the eigendecomposition (ED) of the autocorrelation matrix and SVD of the data matrix are described. The ED/SVD trade-off is discussed.
CitationDuarte, M., Lagunas, M. Eigendecomposition versus singular value decomposition in adaptive array signal processing. "Signal processing", Octubre 1991, vol. 25, núm. 1, p. 25-50.
ISSN0165-1684
Files | Description | Size | Format | View |
---|---|---|---|---|
Eigendecomposition_versus_singular_value.pdf | 932,6Kb | Restricted access |