Show simple item record

dc.contributor.authorPàmies Vilà, Rosa
dc.contributor.authorPätkau, Olga
dc.contributor.authorDòria Cerezo, Arnau
dc.contributor.authorFont Llagunes, Josep Maria
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Mecànica
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Elèctrica
dc.date.accessioned2016-11-23T10:08:37Z
dc.date.available2019-01-01T01:30:31Z
dc.date.issued2017-01
dc.identifier.citationPàmies-Vilà, R., Pätkau, O., Doria-Cerezo, A., Font-Llagunes, J.M. Influence of the controller design on the accuracy of a forward dynamic simulation of human gait. "Mechanism and machine theory", Gener 2017, vol. 107, p. 123-138.
dc.identifier.issn0094-114X
dc.identifier.urihttp://hdl.handle.net/2117/97085
dc.description.abstractThe analysis of a captured motion can be addressed by means of forward or inverse dynamics approaches. For this purpose, a 12 segment 2D model with 14 degrees of freedom is developed and both methods are implemented using multibody dynamics techniques. The inverse dynamic analysis uses the experimentally captured motion to calculate the joint torques produced by the musculoskeletal system during the movement. This information is then used as input data for a forward dynamic analysis without any control design. This approach is able to reach the desired pattern within half cycle. In order to achieve the simulation of the complete gait cycle two different control strategies are implemented to stabilize all degrees of freedom: a proportional derivative (PD) control and a computed torque control (CTC). The selection of the control parameters is presented in this work: a kinematic perturbation is used for tuning PD gains, and pole placement techniques are used in order to determine the CTC parameters. A performance evaluation of the two controllers is done in order to quantify the accuracy of the simulated motion and the control torques needed when using one or the other control approach to track a known human walking pattern.
dc.format.extent16 p.
dc.language.isoeng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria biomèdica
dc.subjectÀrees temàtiques de la UPC::Enginyeria biomèdica::Biomecànica
dc.subject.lcshBiomechanics
dc.subject.lcshBiomimetics
dc.subject.otherControl
dc.subject.otherForward Dynamics
dc.subject.otherHuman Gait
dc.subject.otherBiomechanics
dc.subject.otherMultibody Dynamics
dc.titleInfluence of the controller design on the accuracy of a forward dynamic simulation of human gait
dc.typeArticle
dc.subject.lemacBiomecànica
dc.subject.lemacBiomimètica
dc.contributor.groupUniversitat Politècnica de Catalunya. BIOMEC - Biomechanical Engineering Lab
dc.contributor.groupUniversitat Politècnica de Catalunya. ACES - Control Avançat de Sistemes d'Energia
dc.identifier.doi10.1016/j.mechmachtheory.2016.09.002
dc.relation.publisherversionhttp://www.sciencedirect.com/science/article/pii/S0094114X16301999
dc.rights.accessOpen Access
local.identifier.drac19102169
dc.description.versionPostprint (author's final draft)
local.citation.authorPàmies-Vilà, R.; Pätkau, O.; Doria-Cerezo, A.; Font-Llagunes, J.M.
local.citation.publicationNameMechanism and machine theory
local.citation.volume107
local.citation.startingPage123
local.citation.endingPage138


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain