Show simple item record

dc.contributor.authorJoan Arinyo, Robert
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Ciències de la Computació
dc.date.accessioned2016-11-22T11:51:56Z
dc.date.available2016-11-22T11:51:56Z
dc.date.issued1994-01
dc.identifier.citationJoan-Arinyo, R. "Isothetic polyhedra and monotone boolean formulae". 1994.
dc.identifier.urihttp://hdl.handle.net/2117/96992
dc.description.abstractWe consider the problem of converting boundary representations of isothetic polyhedra into constructive solid geometry (CSG) representations. The CSG representation is a boolean formula based on the halfspaces supporting the faces of the polyhedron. This boolean formula exhibits two important features: no term is complemented (it is monotone) and each supporting halfspace appears in the formula once and only once. In this work we prove that such a representation exists for those cyclic isothetic polyhedra such that for each cyclic deficiency set in the polyhedron it is possible to find out at least either a convex or a concave path of extremal edges which splits the cyclic deficiency set into two subsets.
dc.format.extent18 p.
dc.language.isoeng
dc.relation.ispartofseriesLSI-94-3-R
dc.subject.otherBoundary representations
dc.subject.otherIsothetic polyhedra
dc.subject.otherConstructive solid geometry
dc.subject.otherCSG
dc.titleIsothetic polyhedra and monotone boolean formulae
dc.typeExternal research report
dc.contributor.groupUniversitat Politècnica de Catalunya. GIE - Grup d'Informàtica a l'Enginyeria
dc.rights.accessOpen Access
drac.iddocument1840869
dc.description.versionPostprint (published version)
upcommons.citation.authorJoan-Arinyo, R.
upcommons.citation.publishedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder