Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.781 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Ciències de la Computació
  • Reports de recerca
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Ciències de la Computació
  • Reports de recerca
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Exploiting diversity of margin-based classifiers

Thumbnail
View/Open
R03-49.ps (524,6Kb)
Share:
 
  View Usage Statistics
Cita com:
hdl:2117/96843

Show full item record
Romero Merino, EnriqueMés informacióMés informacióMés informació
Carreras Pérez, Xavier
Màrquez Villodre, Lluís
Document typeResearch report
Defense date2003-12
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
An experimental comparison among Support Vector Machines, AdaBoost and a recently proposed model for maximizing the margin with Feed-forward Neural Networks has been made on a real-world classification problem, namely Text Categorization. The results obtained when comparing their agreement on the predictions show that similar performance does not imply similar predictions, suggesting that different models can be combined to obtain better performance. As a consequence of the study, we derived a very simple confidence measure of the prediction of the tested margin-based classifiers. This measure is based on the margin curve. The combination of margin-based classifiers with this confidence measure lead to a marked improvement on the performance of the system, when combined with several well-known combination schemes.
CitationRomero, E., Carreras, X., Marquez, L. "Exploiting diversity of margin-based classifiers". 2003. 
Is part ofLSI-03-49-R
URIhttp://hdl.handle.net/2117/96843
Collections
  • SOCO - Soft Computing - Reports de recerca [55]
  • Departament de Ciències de la Computació - Reports de recerca [1.106]
  • GPLN - Grup de Processament del Llenguatge Natural - Reports de recerca [88]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
R03-49.ps524,6KbPostscriptView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina