Show simple item record

dc.contributor.authorLevy, Eythan
dc.contributor.authorLouchard, Guy
dc.contributor.authorPetit Silvestre, Jordi
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Ciències de la Computació
dc.identifier.citationLevy, E., Louchard, G., Petit, J. "A Distributed algorithm to find Hamiltonian cycles in Gnp random graphs". 2003.
dc.description.abstractIn this paper, we present a distributed algorithm to find Hamiltonian cycles in random binomial graphs Gnp. The algorithm works on a synchronous distributed setting by first creating a small cycle, then covering almost all vertices in the graph with several disjoint paths, and finally patching these paths and the uncovered vertices to the cycle. Our analysis shows that, with high probability, our algorithm is able to find a Hamiltonian cycle in Gnp when p_n=omega(sqrt{log n}/n^{1/4}). Moreover, we conduct an average case complexity analysis that shows that our algorithm terminates in expected sub-linear time, namely in O(n^{3/4+epsilon}) pulses.
dc.format.extent12 p.
dc.subjectÀrees temàtiques de la UPC::Informàtica::Informàtica teòrica
dc.subject.otherDistributed algorithm
dc.subject.otherHamiltonian cycles
dc.subject.otherRandom binomial graphs
dc.titleA Distributed algorithm to find Hamiltonian cycles in Gnp random graphs
dc.typeExternal research report
dc.rights.accessOpen Access
dc.description.versionPostprint (published version)
upcommons.citation.authorLevy, E.; Louchard, G.; Petit, J.

Files in this item


This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder