A Machine learning approach to POS tagging

View/Open
Document typeResearch report
Defense date1997-12
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
We have applied inductive learning of statistical decision trees
and relaxation labelling to the Natural Language Processing (NLP)
task of morphosyntactic disambiguation (Part Of Speech Tagging).
The learning process is supervised and obtains a language
model oriented to resolve POS ambiguities. This model consists
of a set of statistical decision trees expressing distribution of
tags and words in some relevant contexts.
The acquired language models are complete enough to be directly
used as sets of POS disambiguation rules, and include more complex
contextual information than simple collections of n-grams usually
used in statistical taggers.
We have implemented a quite simple and fast tagger that has been
tested and evaluated on the Wall Street Journal (WSJ) corpus with
a remarkable accuracy.
However, better results can be obtained by translating the trees
into rules to feed a flexible relaxation labelling based tagger.
In this direction we describe a tagger which is able to use
information of any kind (n-grams, automatically acquired constraints,
linguistically motivated manually written constraints, etc.), and in
particular to incorporate the machine learned decision trees.
Simultaneously, we address the problem of tagging when only
small training material is available, which is crucial in any process
of constructing, from scratch, an annotated corpus. We show that quite
high accuracy can be achieved with our system in this situation.
CitationMarquez, L., Padro, L., Rodriguez, H. "A Machine learning approach to POS tagging". 1997.
Is part ofLSI-97-57-R
Files | Description | Size | Format | View |
---|---|---|---|---|
R97-57.pdf | 1,261Mb | View/Open |