Regular triangulations of dynamic sets of points

View/Open
Document typeResearch report
Defense date2000-10
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
The Delaunay triangulations of a set of points are a class of
triangulations which play an important role in a variety of
different disciplines of science. Regular triangulations are a
generalization of Delaunay triangulations that maintain both their
relationship with convex hulls and with Voronoi diagrams. In regular
triangulations, a real value, its weight, is assigned to each point.
In this paper a simple data structure is presented that allows
regular triangulations of sets of points to be dynamically updated,
that is, new points can be incrementally inserted in the set and old
points can be deleted from it. The algorithms we propose for
insertion and deletion are based on a geometrical interpretation of
the history data structure in one more dimension and use lifted
flips as the unique topological operation. This results in rather
simple and efficient algorithms. The algorithms have been
implemented and experimental results are given.
CitationVigo, M., Pla, N. "Regular triangulations of dynamic sets of points". 2000.
Is part ofR00-64
Files | Description | Size | Format | View |
---|---|---|---|---|
R00-64.pdf | 156,3Kb | View/Open |