Show simple item record

dc.contributor.authorHurtado Díaz, Fernando Alfredo
dc.contributor.authorMerino, C.
dc.contributor.authorOliveros, D.
dc.contributor.authorSakai, T.
dc.contributor.authorUrrutia, J.
dc.contributor.authorVentura, Inmaculada
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada II
dc.date.accessioned2010-10-11T11:02:54Z
dc.date.available2010-10-11T11:02:54Z
dc.date.created2009-08
dc.date.issued2009-08
dc.identifier.citationHurtado, F. [et al.]. On polygons enclosing point sets II. "Graphs and combinatorics", Agost 2009, vol. 25, núm. 3, p. 327-339.
dc.identifier.issn0911-0119
dc.identifier.urihttp://hdl.handle.net/2117/9618
dc.description.abstractLet R and B be disjoint point sets such that $R\cup B$ is in general position. We say that B encloses by R if there is a simple polygon P with vertex set B such that all the elements in R belong to the interior of P. In this paper we prove that if the vertices of the convex hull of $R\cup B$ belong to B, and |R| ≤ |Conv(B)| − 1 then B encloses R. The bound is tight. This improves on results of a previous paper in which it was proved that if |R| ≤ 56|Conv (B)| then B encloses R. To obtain our result we prove the next result which is interesting on its own right: Let P be a convex polygon with n vertices $\emph{p_1}$,...,$\emph{p_n}$ and S a set of m points contained in the interior of P, m ≤ n−1. Then there is a convex decomposition {$P_1$,...,$P_n$} of P such that all points from S lie on the boundaries of $P_1$,...,$P_n$, and each $P_i$ contains a whole edge of P on its boundary.
dc.format.extent13 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Geometria::Geometria convexa i discreta
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica discreta::Combinatòria
dc.subject.lcshPolygons
dc.subject.lcshConvex geometry
dc.subject.lcshGraph theory
dc.titleOn polygons enclosing point sets II
dc.typeArticle
dc.subject.lemacPolígons
dc.subject.lemacGeometria convexa
dc.subject.lemacGrafs, Teoria de
dc.contributor.groupUniversitat Politècnica de Catalunya. DCCG - Grup de recerca en geometria computacional, combinatoria i discreta
dc.identifier.doi10.1007/s00373-009-0848-6
dc.relation.publisherversionhttp://www.matem.unam.mx/~urrutia/online_papers/EncPointsREV.pdf
dc.rights.accessOpen Access
drac.iddocument3257540
dc.description.versionPostprint (published version)
upcommons.citation.authorHurtado, F.; Merino, C.; Oliveros, D.; Sakai, T.; Urrutia, J.; Ventura, I.
upcommons.citation.publishedtrue
upcommons.citation.publicationNameGraphs and combinatorics
upcommons.citation.volume25
upcommons.citation.number3
upcommons.citation.startingPage327
upcommons.citation.endingPage339


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 3.0 Spain