dc.contributor.author | Hurtado Díaz, Fernando Alfredo |
dc.contributor.author | Merino, C. |
dc.contributor.author | Oliveros, D. |
dc.contributor.author | Sakai, T. |
dc.contributor.author | Urrutia, J. |
dc.contributor.author | Ventura, Inmaculada |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada II |
dc.date.accessioned | 2010-10-11T11:02:54Z |
dc.date.available | 2010-10-11T11:02:54Z |
dc.date.created | 2009-08 |
dc.date.issued | 2009-08 |
dc.identifier.citation | Hurtado, F. [et al.]. On polygons enclosing point sets II. "Graphs and combinatorics", Agost 2009, vol. 25, núm. 3, p. 327-339. |
dc.identifier.issn | 0911-0119 |
dc.identifier.uri | http://hdl.handle.net/2117/9618 |
dc.description.abstract | Let R and B be disjoint point sets such that $R\cup B$ is in general position. We say that B encloses by R if there is a simple polygon P with vertex set B such that all the elements
in R belong to the interior of P.
In this paper we prove that if the vertices of the convex hull of $R\cup B$ belong to B, and
|R| ≤ |Conv(B)| − 1 then B encloses R. The bound is tight. This improves on results of a
previous paper in which it was proved that if |R| ≤ 56|Conv (B)| then B encloses R. To obtain our result we prove the next result which is interesting on its own right: Let P be a convex polygon with n vertices $\emph{p_1}$,...,$\emph{p_n}$ and S a set of m points contained in the interior of P, m ≤ n−1. Then there is a convex decomposition {$P_1$,...,$P_n$} of P such that all points from S
lie on the boundaries of $P_1$,...,$P_n$, and each $P_i$ contains a whole edge of P on its boundary. |
dc.format.extent | 13 p. |
dc.language.iso | eng |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Spain |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ |
dc.subject | Àrees temàtiques de la UPC::Matemàtiques i estadística::Geometria::Geometria convexa i discreta |
dc.subject | Àrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica discreta::Combinatòria |
dc.subject.lcsh | Polygons |
dc.subject.lcsh | Convex geometry |
dc.subject.lcsh | Graph theory |
dc.title | On polygons enclosing point sets II |
dc.type | Article |
dc.subject.lemac | Polígons |
dc.subject.lemac | Geometria convexa |
dc.subject.lemac | Grafs, Teoria de |
dc.contributor.group | Universitat Politècnica de Catalunya. DCCG - Grup de recerca en geometria computacional, combinatoria i discreta |
dc.identifier.doi | 10.1007/s00373-009-0848-6 |
dc.relation.publisherversion | http://www.matem.unam.mx/~urrutia/online_papers/EncPointsREV.pdf |
dc.rights.access | Open Access |
local.identifier.drac | 3257540 |
dc.description.version | Postprint (published version) |
local.citation.author | Hurtado, F.; Merino, C.; Oliveros, D.; Sakai, T.; Urrutia, J.; Ventura, I. |
local.citation.publicationName | Graphs and combinatorics |
local.citation.volume | 25 |
local.citation.number | 3 |
local.citation.startingPage | 327 |
local.citation.endingPage | 339 |