Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.772 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • DCCG - Grup de recerca en geometria computacional, combinatoria i discreta
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • DCCG - Grup de recerca en geometria computacional, combinatoria i discreta
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On polygons enclosing point sets II

Thumbnail
View/Open
onpolygonsenclosing.pdf (179,4Kb)
Share:
 
 
10.1007/s00373-009-0848-6
 
  View Usage Statistics
Cita com:
hdl:2117/9618

Show full item record
Hurtado Díaz, Fernando AlfredoMés informacióMés informació
Merino, C.
Oliveros, D.
Sakai, T.
Urrutia, J.
Ventura, Inmaculada
Document typeArticle
Defense date2009-08
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Let R and B be disjoint point sets such that $R\cup B$ is in general position. We say that B encloses by R if there is a simple polygon P with vertex set B such that all the elements in R belong to the interior of P. In this paper we prove that if the vertices of the convex hull of $R\cup B$ belong to B, and |R| ≤ |Conv(B)| − 1 then B encloses R. The bound is tight. This improves on results of a previous paper in which it was proved that if |R| ≤ 56|Conv (B)| then B encloses R. To obtain our result we prove the next result which is interesting on its own right: Let P be a convex polygon with n vertices $\emph{p_1}$,...,$\emph{p_n}$ and S a set of m points contained in the interior of P, m ≤ n−1. Then there is a convex decomposition {$P_1$,...,$P_n$} of P such that all points from S lie on the boundaries of $P_1$,...,$P_n$, and each $P_i$ contains a whole edge of P on its boundary.
CitationHurtado, F. [et al.]. On polygons enclosing point sets II. "Graphs and combinatorics", Agost 2009, vol. 25, núm. 3, p. 327-339. 
URIhttp://hdl.handle.net/2117/9618
DOI10.1007/s00373-009-0848-6
ISSN0911-0119
Publisher versionhttp://www.matem.unam.mx/~urrutia/online_papers/EncPointsREV.pdf
Collections
  • DCCG - Grup de recerca en geometria computacional, combinatoria i discreta - Articles de revista [85]
  • Departament de Matemàtiques - Articles de revista [3.007]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
onpolygonsenclosing.pdf179,4KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina