Mostra el registre d'ítem simple

dc.contributorCosta Castelló, Ramon
dc.contributor.authorFargas Marquès, Andreu
dc.contributor.otherUniversitat Politècnica de Catalunya. Institut d'Organització i Control de Sistemes Industrials
dc.date.accessioned2016-11-09T14:24:23Z
dc.date.available2016-11-09T14:24:23Z
dc.date.issued2016-01-22
dc.identifier.citationFargas Marquès, A. Energy efficient control of electrostatically actuated MEMS. Tesi doctoral, UPC, Institut d'Organització i Control de Sistemes Industrials, 2016. DOI 10.5821/dissertation-2117-96145.
dc.identifier.urihttp://hdl.handle.net/2117/96145
dc.description.abstractPlenty of Micro-electro-mechanical Systems (MEMS) devices are actuated using electrostatic forces, and specially, parallel-plate actuators are extensively used, due to the simplicity of their design. Nevertheless, parallel-plate actuators have some limitations due to the nonlinearity of the generated force. The dissertation analyzes the dynamics of the lumped electrostatically actuated nonlinear system, in order to obtain insight on its characteristics, define desired performance goals and implement a controller for energy efficient robustly stable actuation of MEMS resonators. In the first part of the dissertation, the modeling of the electromechanical lumped system is developed. From a complete distributed parameters model for MEMS devices which rely on electrostatic actuation, a concentrated parameters simplification is derived to be used for analysis and control design. Based on the model, energy analysis of the pull-in instability is performed. The classic approach is revisited to extend the results to models with a nonlinear springs. Analysis of the effect of dynamics is studied as an important factor for the stability of the system. From this study, the Resonant Pull-in Condition for parallel-plate electrostatically actuated MEMS resonators is defined and experimentally validated. Given the importance of the nonlinear dynamics and its richness in behaviors, Harmonic Balance is chosen as a tool to characterize the steady-state oscillation of the resonators. This characterization leads to the understanding of the key factors for large and stable oscillation of resonators. An important conclusion is reached, Harmonic Balance predicts that any oscillation amplitude is possible for any desired frequency if the appropriate voltage is applied to the resonator. And the energy consumption is dependent on this chosen oscillation frequency. Based on Harmonic Balance results, four main goals are defined for the control strategy: Stable oscillation with large amplitudes of motion; Robust oscillation independently of MEMS imperfections; Pure sinus-like oscillation for high-grade sensing; and Low energy consumption. The second part of the dissertation deals with the controller selection, design and verification. A survey of prior work on MEMS control confirms that existing control approaches cannot provide the desired performance. Consequently, a new three-stage controller is proposed to obtain the desired oscillation with the expected stability and energy efficiency. The controller has three different control loops. The first control loop includes a Robust controller designed using on µ-synthesis, to deal with MEMS resonators uncertainties. The second control loop includes an Internal-Model-Principle Resonant controller, to generate the desired control action to obtain the desired oscillation. And the third control loop handles the energy consumption minimization through an Extremum Seeking Controller, which selects the most efficient working frequency for the desired oscillation. The proposed controller is able to automatically generate the needed control voltage, as predicted by the Harmonic Balance analysis, to operate the parallel-plate electrostatically actuated MEMS resonator at the desired oscillation. Performance verification of stability, robustness, sinus-like oscillation and energy efficiency is carried out through simulation. Finally, the needed steps for a real implementation are analyzed. Independent two-sided actuation for full-range amplitude oscillation is introduced to overcome the limitations of one-sided actuation. And a modification of standard Electromechanical Amplitude Modulation is analyzed and validated for position feedback implementation. With these improvements, a MEMS resonator with the desired specifications for testing the proposed control is designed for fabrication. Based on this design, testing procedure is discussed as future work.
dc.description.abstractMolts microsistemes (MEMS) són actuats amb forces electrostàtiques, i especialment, els actuadors electrostàtics de plaques paral.leles són molt usats, degut a la simplicitat del seu disseny. Tot i això, aquests actuadors tenen limitacions degut a la no-linealitat de les forces generades. La tesi analitza el sistema mecànic no-lineal actuat electrostàticament que forma el MEMS, per tal d'entendre'n les característiques, definir objectius de control de l'oscil.lació, i implementar un controlador robust, estable i eficient energèticament. A la primera part de la tesi es desenvolupa el modelat del sistema electromecànic complert. A partir de la formulació de paràmetres distribuïts aplicada a dispositius MEMS amb actuació electrostàtica, es deriva una formulació de paràmetres concentrats per a l'anàlisi i el disseny del control. Basat en aquest model, s'analitza energèticament la inestabilitat anomenada Pull-in, ampliant els resultats de l'enfocament clàssic al model amb motlles no-lineals. Dins de l'anàlisi, l'evolució dinàmica s'estudia per ser un factor important per a l'estabilitat. D'aquest estudi, la Resonant Pull-in Condition per a actuadors electrostàtics de plaques paral.leles es defineix i es valida experimentalment. Donada la importància de la dinàmica no-lineal del sistema i la seva riquesa de comportaments, s'utilitza Balanç d'Harmònics per tal de caracteritzar les oscil.lacions en estacionari. Aquesta caracterització permet entendre els factors claus per a obtenir oscil.lacions estables i d'amplitud elevada. El Balanç d'Harmònics dóna una conclusió important: qualsevol amplitud d'oscil.lació és possible per a qualsevol freqüència desitjada si s'aplica el voltatge adequat al ressonador. I el consum energètic associat a aquesta oscil.lació depèn de la freqüència triada. Llavors, basat en aquests resultats, quatre objectius es plantegen per a l'estratègia de control: oscil.lació estable amb amplituds elevades; robustesa de l'oscil.lació independentment de les imperfeccions dels MEMS; oscil.lació sinusoïdal sense harmònics per a aplicacions d'alta precisió; i baix consum energètic. La segona part de la tesi tracta la selecció, disseny i verificació dun controlador adequat per a aquests objectius. La revisió dels treballs existents en control de MEMS confirma que cap dels enfocaments actuals permet obtenir els objectius desitjats. En conseqüència, es proposa el disseny d'un nou controlador amb tres etapes per tal d'obtenir l'oscil.lació desitjada amb estabilitat i eficiència energètica. El controlador té tres llaços de control. Al primer llaç, un controlador robust dissenyat amb µ-síntesis gestiona les incertes es dels MEMS. El segon llaç inclou un controlador Ressonant, basat en el Principi del Model Intern, per a generar l'acció de control necessària per a obtenir l'oscil.lació desitjada. I el tercer llaç de control gestiona la minimització de l'energia consumida mitjançant un controlador basat en Extremum Seeking, el qual selecciona la freqüència de treball més eficient energèticament per a l'oscil.lació triada. El controlador proposat és capaç de generar automàticament el voltatge necessari, igual al previst pel Balanç d'Harmònics, per tal d'operar electrostàticament amb plaques paral.leles els ressonadors MEMS. Mitjançant simulació se'n verifica l'estabilitat, robustesa, inexistència d'harmònics i eficiència energètica de l'oscil.lació. Finalment, la implementació real és analitzada. En primer lloc, un nou esquema d'actuació per dos costats amb voltatges independents es proposa per aconseguir l'oscil.lació del ressonador en tot el rang d'amplituds. I en segon lloc, una modificació del sensat amb Modulació d'Amplitud Electromecànica s'utilitza per tancar el llaç de control de posició. Amb aquestes millores, un ressonador MEMS es dissenya per a ser fabricat i validar el control. Basat en aquest disseny, es proposa un procediment de test plantejat com a treball futur.
dc.format.extent242 p.
dc.language.isoeng
dc.publisherUniversitat Politècnica de Catalunya
dc.rightsL'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-sa/3.0/es/
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/
dc.sourceTDX (Tesis Doctorals en Xarxa)
dc.subjectÀrees temàtiques de la UPC::Informàtica
dc.titleEnergy efficient control of electrostatically actuated MEMS
dc.typeDoctoral thesis
dc.subject.lemacControl automàtic
dc.subject.lemacSistemes microelectromecànics
dc.identifier.doi10.5821/dissertation-2117-96145
dc.rights.accessOpen Access
dc.description.versionPostprint (published version)
dc.identifier.tdxhttp://hdl.handle.net/10803/384325


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple