Show simple item record

dc.contributor.authorAtserias, Albert
dc.contributor.authorGalesi, Nicola
dc.contributor.authorGavaldà Mestre, Ricard
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Ciències de la Computació
dc.date.accessioned2016-11-09T11:48:37Z
dc.date.available2016-11-09T11:48:37Z
dc.date.issued2000-04
dc.identifier.citationAtserias, A., Galesi, N., Gavaldà, R. "Monotone proofs of the pigeon hole principle". 2000.
dc.identifier.urihttp://hdl.handle.net/2117/95940
dc.description.abstractWe study the complexity of proving the Pigeon Hole Principle (PHP) in a monotone variant of the Gentzen Calculus, also known as Geometric Logic. We show that the standard encoding of the PHP as a monotone sequent admits quasipolynomial-size proofs in this system. This result is a consequence of deriving the basic properties of certain quasipolynomial-size monotone formulas computing the boolean threshold functions. Since it is known that the shortest proofs of the PHP in systems such as Resolution or Bounded Depth Frege are exponentially long, it follows from our result that these systems are exponentially separated from the monotone Gentzen Calculus. We also consider the monotone sequent (CLIQUE) expressing the {it clique}-{it coclique} principle defined by Bonet, Pitassi and Raz (1997). We show that monotone proofs for this sequent can be easily reduced to monotone proofs of the one-to-one and onto PHP, and so CLIQUE also has quasipolynomial-size monotone proofs. As a consequence, Cutting Planes with polynomially bounded coefficients is also exponentially separated from the monotone Gentzen Calculus. Finally, a simple simulation argument implies that these results extend to the Intuitionistic Gentzen Calculus. Our results partially answer some questions left open by P. Pudlak
dc.format.extent17 p.
dc.language.isoeng
dc.relation.ispartofseriesLSI-00-27-R
dc.subjectÀrees temàtiques de la UPC::Informàtica::Informàtica teòrica
dc.subject.otherPigeon hole principle
dc.subject.otherPHP
dc.subject.otherGeometric logic
dc.subject.otherGentzen calculus
dc.subject.otherCLIQUE
dc.titleMonotone proofs of the pigeon hole principle
dc.typeExternal research report
dc.rights.accessOpen Access
local.identifier.drac1837366
dc.description.versionPostprint (published version)
local.citation.authorAtserias, A.; Galesi, N.; Gavaldà, R.


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record