Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.620 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Ciències de la Computació
  • Reports de recerca
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Ciències de la Computació
  • Reports de recerca
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Monotone proofs of the pigeon hole principle

Thumbnail
View/Open
R00-27.ps (238,6Kb)
Share:
 
  View Usage Statistics
Cita com:
hdl:2117/95940

Show full item record
Atserias, AlbertMés informacióMés informacióMés informació
Galesi, Nicola
Gavaldà Mestre, RicardMés informacióMés informació
Document typeResearch report
Defense date2000-04
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
We study the complexity of proving the Pigeon Hole Principle (PHP) in a monotone variant of the Gentzen Calculus, also known as Geometric Logic. We show that the standard encoding of the PHP as a monotone sequent admits quasipolynomial-size proofs in this system. This result is a consequence of deriving the basic properties of certain quasipolynomial-size monotone formulas computing the boolean threshold functions. Since it is known that the shortest proofs of the PHP in systems such as Resolution or Bounded Depth Frege are exponentially long, it follows from our result that these systems are exponentially separated from the monotone Gentzen Calculus. We also consider the monotone sequent (CLIQUE) expressing the {it clique}-{it coclique} principle defined by Bonet, Pitassi and Raz (1997). We show that monotone proofs for this sequent can be easily reduced to monotone proofs of the one-to-one and onto PHP, and so CLIQUE also has quasipolynomial-size monotone proofs. As a consequence, Cutting Planes with polynomially bounded coefficients is also exponentially separated from the monotone Gentzen Calculus. Finally, a simple simulation argument implies that these results extend to the Intuitionistic Gentzen Calculus. Our results partially answer some questions left open by P. Pudlak
CitationAtserias, A., Galesi, N., Gavaldà, R. "Monotone proofs of the pigeon hole principle". 2000. 
Is part ofLSI-00-27-R
URIhttp://hdl.handle.net/2117/95940
Collections
  • Departament de Ciències de la Computació - Reports de recerca [1.106]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
R00-27.ps238,6KbPostscriptView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina