Show simple item record

dc.contributor.authorOllé Torner, Mercè
dc.contributor.authorPacha Andújar, Juan Ramón
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I
dc.description.abstractComplex instability is a generic kind of instability in Hamiltonian systems with three degrees of freedom. In this work, some examples of such instability are shown, together with a numerical analysis of the dynamics close to the transition from stability to comlex instability for a family of periodic orbits.
dc.rightsAttribution-NonCommercial-NoDerivs 2.5 Spain
dc.subject.lcshHamiltonian dynamical systems
dc.subject.lcshLagrangian functions
dc.subject.lcshGlobal analysis (Mathematics)
dc.subject.othercomplex instability
dc.titleMotion near the transition to complex instability: some examples
dc.subject.lemacHamilton, Sistemes de
dc.subject.lemacLagrange, Funcions de
dc.subject.lemacPartícules (Física nuclear)
dc.subject.lemacVarietats (Matemàtica)
dc.contributor.groupUniversitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
dc.subject.amsClassificació AMS::70 Mechanics of particles and systems::70H Hamiltonian and Lagrangian mechanics
dc.subject.amsClassificació AMS::58 Global analysis, analysis on manifolds
dc.subject.amsClassificació AMS::70 Mechanics of particles and systems::70F Dynamics of a system of particles, including celestial mechanics
dc.rights.accessOpen Access

Files in this item


This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 2.5 Spain