dc.contributor.author | Bose, Prosenjit |
dc.contributor.author | Dujmovic, Vida |
dc.contributor.author | Hurtado Díaz, Fernando Alfredo |
dc.contributor.author | Langerman, Stefan |
dc.contributor.author | Morin, Pat |
dc.contributor.author | Wood, David |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada II |
dc.date.accessioned | 2010-10-08T11:52:25Z |
dc.date.available | 2010-10-08T11:52:25Z |
dc.date.created | 2009-12 |
dc.date.issued | 2009-12 |
dc.identifier.citation | Bose, P. [et al.]. A polynomial bound for untangling geometric planar graphs. "Discrete and computational geometry", Desembre 2009, vol. 42, núm. 4, p. 570-585. |
dc.identifier.issn | 0179-5376 |
dc.identifier.uri | http://hdl.handle.net/2117/9583 |
dc.description.abstract | To untangle a geometric graph means to move some of the vertices so that the resulting geometric graph has no crossings. Pach and Tardos (Discrete Comput. Geom. 28(4): 585–592, 2002) asked if every n-vertex geometric planar graph can be untangled while keeping at least $n^\in{}$ vertices fixed. We answer this question in the affirmative with ∊ = 1/4. The previous best known bound was Ω$(\sqrt{log\,n/log\,log\,n})$. We also consider untangling geometric trees. It is known that every n-vertex geometric tree can be untangled while keeping at least $(\sqrt{n/3})$ vertices fixed, while the best upper bound was O$((n\,log\,n)^{2/3})$. We answer a question of Spillner and Wolff
(http://arxiv.org/abs/0709.0170) by closing this gap for untangling trees. In particular,
we show that for infinitely many values of n, there is an n-vertex geometric tree that
cannot be untangled while keeping more than $3(\sqrt{n}-1)$ vertices fixed. |
dc.format.extent | 16 p. |
dc.language.iso | eng |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Spain |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ |
dc.subject | Àrees temàtiques de la UPC::Matemàtiques i estadística::Geometria::Geometria convexa i discreta |
dc.subject.lcsh | Crossings |
dc.subject.lcsh | Discrete geometry |
dc.subject.lcsh | Graph theory |
dc.subject.lcsh | Polynomials |
dc.title | A polynomial bound for untangling geometric planar graphs |
dc.type | Article |
dc.subject.lemac | Grafs, Teoria de |
dc.subject.lemac | Geometria discreta |
dc.subject.lemac | Polinomis |
dc.contributor.group | Universitat Politècnica de Catalunya. DCCG - Grup de recerca en geometria computacional, combinatoria i discreta |
dc.identifier.doi | 10.1007/s00454-008-9125-3 |
dc.relation.publisherversion | http://arxiv.org/PS_cache/arxiv/pdf/0710/0710.1641v2.pdf |
dc.rights.access | Open Access |
local.identifier.drac | 3257231 |
dc.description.version | Postprint (published version) |
local.citation.author | Bose, P.; Dujmovic, V.; Hurtado, F.; Langerman, S.; Morín, P.; Wood, D. |
local.citation.publicationName | Discrete and computational geometry |
local.citation.volume | 42 |
local.citation.number | 4 |
local.citation.startingPage | 570 |
local.citation.endingPage | 585 |